toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P. url  doi
openurl 
  Title Variability in crop yields associated with climate anomalies in China over the past three decades Type Journal Article
  Year 2016 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 16 Issue 6 Pages 1715-1723  
  Keywords Adaptation; Climate change; Climate extremes; Drought; Impacts and vulnerability  
  Abstract We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.  
  Address 2016-06-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4757  
Permanent link to this record
 

 
Author D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedic, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. url  doi
openurl 
  Title Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review Type Journal Article
  Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.  
  Volume 73 Issue 1 Pages 15-25  
  Keywords climate regulation; food, habitat services; land degradation prevention; moderation of extreme events; natural (landscape) heritage; primary production; regulation of water flows; water quality regulation; Grassland Management; Plant-Communities; Land Degradation; Inner-Mongolia; Trade-Offs; Biodiversity; Provision; Impact; Consequences; Conservation  
  Abstract The ecosystem services (ES) approach is a framework for describing the benefits of nature to human well-being, and this has become a popular instrument for assessment and evaluation of ecosystems and their functions. Grazing lands can provide a wide array of ES that depend on their management practices and intensity. This article reviews the trends and approaches used in the analysis of some relevant ES provided by grazing systems, in line with the framework principles of the Millennium Ecosystem Assessment (MA). The scientific literature provides reports of many studies on ES in general, but the search here focused on grazing systems, which returned only sixty-two papers. This review of published papers highlights that: (i) in some papers, the concept of ES as defined by the MA is misunderstood (e.g., lack of anthropocentric vision); (ii) 34% of the papers dealt only with one ES, which neglects the need for the multisectoral approach suggested by the MA; (iii) few papers included stakeholder involvement to improve local decision-making processes; (iv) cultural ES have been poorly studied despite being considered the most relevant for local and general stakeholders; and (v) stakeholder awareness of well-being as provided by ES in grazing systems can foster both agri-environmental schemes and the willingness to pay for these services.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-5242 ISBN Medium Review  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5191  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Rodriguez, A.; Dosio, A.; Goodess, C.M.; Harpham, C.; Minguez, M.I.; Sanchez, E. url  doi
openurl 
  Title Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century Type Journal Article
  Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 134 Issue 1-2 Pages 283-297  
  Keywords regional climate model; bias correction; weather generator; circulation model; simulations; temperature; precipitation; ensemble; uncertainty; extremes  
  Abstract Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4805  
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R. url  doi
openurl 
  Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 4 Pages  
  Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought  
  Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4814  
Permanent link to this record
 

 
Author Murat, M.; Malinowska, I.; Gos, M.; Krzyszczak, J. doi  openurl
  Title Forecasting daily meteorological time series using ARIMA and regression models Type Journal Article
  Year 2018 Publication International Agrophysics Abbreviated Journal Int. Agrophys.  
  Volume 32 Issue 2 Pages 253-264  
  Keywords regression models; forecast; time series; meteorological quantities; Response Surfaces; Extreme Heat; Wheat; Climate  
  Abstract The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt-Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.  
  Address 2018-06-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-8722 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5202  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: