toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W. url  doi
openurl 
  Title Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 141 Issue Pages 160-173  
  Keywords Integrated assessment; Global change; Sustainability; Agriculture; Farm; structural change; Spatially explicit; Climate smart agriculture; affecting land-use; integrated assessment; multiobjective optimization; analytical framework; trade-offs; systems; uncertainties; policies; future; adaptation  
  Abstract Changes in climate, technology, policy and prices affect agricultural and rural development. To evaluate whether this development is sustainable, impacts of these multiple drivers need to be assessed for multiple indicators. In a case study area in the Netherlands, a bio-economic farm model, an agent-based land-use change model, and a regional emission model have been used to simulate rural development under two plausible global change scenarios at both farm and landscape level. Results show that in this area, climate change will have mainly negative economic impacts (dairy gross margin, arable gross margin, economic efficiency, milk production) in the warmer and drier W+ scenario, while impacts are slightly positive in the G scenario with moderate climate change. Dairy farmers are worse off than arable farmers in both scenarios. Conversely, when the W+ scenario is embedded in the socio-economic Global Economy (GE) scenario, changes in technology, prices, and policy are projected to have a positive economic impact, more than offsetting the negative climate impacts. Important is, however, that environmental impacts (global warming, terrestrial and aquatic eutrophication) are largely negative and social impacts (farm size, number of farms, nature area, odour) are mixed. In the G scenario combined with the socio-economic Regional Communities (RC) scenario the average dairy gross margin in particular is negatively affected. Social impacts are similarly mixed as in the GE scenario, while environmental impacts are less severe. Our results suggest that integrated assessments at farm and landscape level can be used to guide decision-makers in spatial planning policies and climate change adaptation. As there will always be trade-offs between economic, social, and environmental impacts stakeholders need to interact and decide upon most important directions for policies. This implies a choice between production and income on the one hand and social and environmental services on the other hand  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4742  
Permanent link to this record
 

 
Author Wolf, J.; Kanellopoulos, A.; Kros, J.; Webber, H.; Zhao, G.; Britz, W.; Reinds, G.J.; Ewert, F.; de Vries, W. url  doi
openurl 
  Title Combined analysis of climate, technological and price changes on future arable farming systems in Europe Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 140 Issue Pages 56-73  
  Keywords agriculture; capri; climate change; environmental impact; farming system; fssim; integrated assessment; integrator; model linkage; n emission; price change; scenarios; simplace; technological change; crop simulation-models; agricultural land-use; integrated assessment; growth; strategies; nitrogen; soils; environment; scenarios; emissions  
  Abstract In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable crops; the CAPRI model to estimate impacts on global agricultural markets, specifically product prices; the bio-economic farm model FSSIM to calculate the future changes in cropping patterns and farm net income at the farm and regional level; and the environmental model INTEGRATOR to calculate nitrogen (N) uptake and losses to air and water. First, the four linked models were applied to analyse the effect of climate change only or a most likely baseline (i.e. B1) scenario for 2050 as well as for two alternative scenarios with, respectively, strong (i.e. A1-b1) and weak economic growth (B2) for five regions/countries across Europe (i.e. Denmark, Flevoland, Midi Pyrenees, Zachodniopomorsld and Andalucia). These analyses Were repeated but assuming in addition to climate change impacts, also the effects of changes in technology and management on crop yields, the effects of changes in prices and policies in 2050, and the effects of all factors together. The outcomes show that the effects of climate change to 2050 result in higher farm net incomes in the Northern and Northern-Central EU regions, in practically unchanged farm net incomes in the Central and Central-Southern EU regions, and in much lower farm net incomes in Southern EU regions compared to those in the base year. Climate change in combination with improved technology and farm management and/or with price changes towards 2050 results in a higher to much higher farm net incomes. Increases in farm net income for the B1 and A1-b1 scenarios are moderately stronger than those for the B2 scenario, due to the smaller increases in product prices and/or yields for the B2 scenario. Farm labour demand slightly to moderately increases towards 2050 as related to changes in cropping patterns. Changes in N2O emissions and N leaching compared to the base year are mainly caused by changes in total N inputs from the applied fertilizers and animal manure, which in turn are influenced by changes in crop yields and cropping patterns, whereas NH3 emissions are mainly determined by assumed improvements in manure application techniques. N emissions and N leaching strongly increase in Denmark and Zachodniopomorski, slightly decrease to moderately increase in Flevoland and Midi-Pyrenees, and strongly decrease in Andalucia, except for NH3 emissions which zero to moderately decrease in Flevoland and Denmark. (C) 2015 Elsevier Ltd. All tights reserved.  
  Address 2015-10-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4703  
Permanent link to this record
 

 
Author Zhang, W.; Liu, C.; Zheng, X.; Zhou, Z.; Cui, F.; Zhu, B.; Haas, E.; Klatt, S.; Butterbach-Bahl, K.; Kiese, R. url  doi
openurl 
  Title Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 140 Issue Pages 1-10  
  Keywords Model ensemble; Straw incorporation; Irrigation; Fertilization; Calcareous soil; North China Plain; process-oriented model; soil organic-matter; biogeochemical model; cropping system; N2O emissions; forest soils; microbial-growth; rainfall events; calcareous soil  
  Abstract The DNDC, LandscapeDNDC and IAP-N-GAS models have been designed to simulate the carbon and nitrogen processes of terrestrial ecosystems. Until now, a comparison of these models using simultaneous observations has not been reported, although such a comparison is essential for further model development and application. This study aimed to evaluate the performance of the models, delineate the strengths and limitations of each model for simulating soil nitrous oxide (N2O) and nitric oxide (NO) emissions, and explore short-comings of these models that may require reconsideration. We conducted comparisons among the models using simultaneous observations of both gases and relevant variables from the winter wheat-summer maize rotation system at three field sites with calcareous soils. Simulations of N2O and NO emissions by the three models agreed well with annual observations, but not with daily observations. All models failed to correctly simulate soil moisture, which could explain some of the incorrect daily fluxes of N2O and NO, especially for intensive fluxes during the growing season. Multi-model ensembles are promising approaches to better simulate daily gas emissions. IAP-N-GAS underestimated the priming effect of straw incorporation on N2O and NO emissions, but better results were obtained with DNDC95 and LandscapeDNDC. LandscapeDNDC and IAP-N-GAS need to improve the simulation of irrigation water allocation and residue decomposition processes, respectively, and together to distinguish different irrigation methods as DNDC95 does. All three models overestimated the emissions of the nitrogenous gases for high nitrogen fertilizer (>430 kg N ha(-1) yr(-1)) addition treatments, and therefore, future research should focus more on the simulation of the limitation of soil dissolvable organic carbon on denitrification in calcareous soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4685  
Permanent link to this record
 

 
Author Mitter, H.; Heumesser, C.; Schmid, E. url  doi
openurl 
  Title Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change Type Journal Article
  Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 46 Issue Pages 75-90  
  Keywords climate change impact; adaptation; agricultural vulnerability; portfolio optimization; agricultural policy; agri-environmental payment; adaptive capacity; change impacts; risk-aversion; land-use; ecosystem services; change scenarios; europe; policy; future; water  
  Abstract Agricultural vulnerability to climate change is likely to vary considerably between agro-environmental regions. Exemplified on Austrian cropland, we aim at (i) quantifying climate change impacts on agricultural vulnerability which is approximated by the indicators crop yields and gross margins, (ii) developing robust crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on the choice of crop production portfolios. We have employed a spatially explicit, integrated framework to assess agricultural vulnerability and adaptation. It combines a statistical climate change model for Austria and the period 2010-2040, a crop rotation model, the bio-physical process model EPIC (Environmental Policy Integrated Climate), and a portfolio optimization model. We find that under climate change, crop production portfolios include higher shares of intensive crop management practices, increasing average crop yields by 2-15% and expected gross margins by 3-18%, respectively. The results depend on the choice of adaptation measures and on the level of risk aversion and vary by region. In the semi-arid eastern parts of Austria, average dry matter crop yields are lower but gross margins are higher than in western Austria due to bio-physical and agronomic heterogeneities. An abolishment of decoupled farm payments and a threefold increase in agri-environmental premiums would reduce nitrogen inputs by 23-33%, but also crop yields and gross margins by 18-37%, on average. From a policy perspective, a twofold increase in agri-environmental premiums could effectively reduce the trade-offs between crop production and environmental impacts. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4675  
Permanent link to this record
 

 
Author Sieber, S.; Amjath-Babu, T.S.; Jansson, T.; Müller, K.; Tscherning, K.; Graef, F.; Pohle, D.; Helming, K.; Rudloff, B.; Saravia-Matus, B.S.; Gomez y Paloma, S. url  doi
openurl 
  Title Sustainability impact assessment using integrated meta-modelling: Simulating the reduction of direct support under the EU common agricultural policy (CAP) Type Journal Article
  Year 2013 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 33 Issue Pages 235-245  
  Keywords SIAT; CAP; sustainability; impact assessment; land use change; trade off analysis; model; Netherlands; systems  
  Abstract Assessing the impact of macro-level policy driven land use changes on regional sustainability is an important task that can facilitate complex decision making processes of introducing reforms. The research work demonstrates the ability of Sustainability Impact Assessment Tool (SIAT), a meta-model, in conducting ex ante spatially explicit cross sectoral impact assessments of changes in common agricultural policy (CAP). The meta-model is able to appraise impacts of CAP amendments on land use and their repercussions on multiple indicators of sustainability. The presented study comprehensively analyses the possible impacts of discontinuing direct financial support to farmers under CAP. The simulations of the meta-model are able to reveal the land use changes both at EU and regional levels as well as to bring forth the subsequent changes in a number of indicators representing the regional sustainability (for five case study regions). In a nutshell, the simulations indicate that a reduction in direct support brings in general, a decrease in farmed area, an increase in forested land, less fluctuation in natural vegetation coverage, increase in abandoned arable land area and negligible changes in built-up area despite regionally diverging land use trends. The simulated changes in sustainability indicators for the study regions in consequence to these land use changes show that the discontinuation of subsidies evokes responses that are in general climate friendly (reduction in methane and N2O emissions, diminishing energy use and reduction in global warming potential), economically beneficial (increase in gross value of agriculture) and socially desired (decrease in unemployment rate) as well as environmentally harmful (increase in pesticide use). Even though the appraisals of diversity indicators such as forest deadwood and farmland birds are not conclusive for all regions, the changes are positive for the former indicator and slightly negative for the latter in general. The trade-offs among these regional sustainability indicators using their directional associations are also presented for a comprehensive assessment of the impacts. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4479  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: