|   | 
Details
   web
Records
Author Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P.; Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P.
Title Mitigation and quantification of greenhouse gas emissions in Mediterranean cropping systems Type Journal Article
Year 2017 Publication Agriculture, Ecosystems & Environment Abbreviated Journal Agriculture, Ecosystems & Environment
Volume 238 Issue Pages 1-4
Keywords Climate-Change; Soil Carbon
Abstract
Address 2017-03-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8809 ISBN Medium Editorial Material
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4940
Permanent link to this record
 

 
Author Andreoli, V.; Cassardo, C.; Iacona, L.T.; Spanna, F.
Title Description and Preliminary Simulations with the Italian Vineyard Integrated Numerical Model for Estimating Physiological Values (IVINE) Type Journal Article
Year 2019 Publication Agronomy Abbreviated Journal Agronomy
Volume 9 Issue 2 Pages
Keywords viticulture; crop model; phenology; physiological processes; climate; micrometeorology; microclimate; climate change; water status; balance model; crop; phenology; growth; STICS; implementation; carbon; yield
Abstract The numerical crop growth model Italian Vineyard Integrated Numerical model for Estimating physiological values (IVINE) was developed in order to evaluate environmental forcing effects on vine growth. The IVINE model simulates vine growth processes with parameterizations, allowing the understanding of plant conditions at a vineyard scale. It requires a set of meteorology data and soil water status as boundary conditions. The primary model outputs are main phenological stages, leaf development, yield, and sugar concentration. The model requires setting some variety information depending on the cultivar: At present, IVINE is optimized for Vitis vinifera L. Nebbiolo, a variety grown mostly in the Piedmont region (northwestern Italy). In order to evaluate the model accuracy, IVINE was validated using experimental observations gathered in Piedmontese vineyards, showing performances similar or slightly better than those of other widely used crop models. The results of a sensitivity analysis performed to highlight the effects of the variations of air temperature and soil water potential input variables on IVINE outputs showed that most phenological stages anticipated with increasing temperatures, while berry sugar content saturated at about 25.5 °Bx. Long-term (60 years, in the period 1950–2009) simulations performed over a Piedmontese subregion showed statistically significant variations of most IVINE output variables, with larger time trend slopes referring to the most recent 30-year period (1980–2009), thus confirming that ongoing climate change started influencing Piedmontese vineyards in 1980.
Address 2019-02-21
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4395 ISBN Medium article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5218
Permanent link to this record
 

 
Author Ghaley, B.B.; Sandhu, H.S.; Porter, J.R.
Title Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems Type Journal Article
Year 2015 Publication PLoS One Abbreviated Journal PLoS One
Volume 10 Issue 4 Pages e0123869
Keywords Carbon/*metabolism; *Conservation of Natural Resources/economics; Denmark; *Ecosystem; Fagus/metabolism; Forests; Nitrogen/*metabolism; Oxygen/*metabolism; Soil
Abstract Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha(-1) yr(-1)) followed by CFE (US$ 800 ha(-1) yr(-1)) and Cwheat (US$ 339 ha(-1) yr(-1)). The combined economic value was highest in the CFE (US$ 3143 ha(-1) yr(-1)) as compared to the Cwheat (US$ 2767 ha(-1) yr(-1)) and beech forest (US$ 2365 ha(-1) yr(-1)). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4692
Permanent link to this record
 

 
Author Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U.
Title Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 5 Issue 9 Pages eaau2406
Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon
Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5227
Permanent link to this record
 

 
Author Quain, M.D.; Makgopa, M.E.; Marquez-Garcia, B.; Comadira, G.; Fernandez-Garcia, N.; Olmos, E.; Schnaubelt, D.; Kunert, K.J.; Foyer, C.H.
Title Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits Type Journal Article
Year 2014 Publication Plant Biotechnology Journal Abbreviated Journal Plant Biotechnol. J.
Volume 12 Issue 7 Pages 903-913
Keywords Arabidopsis/*genetics/metabolism/physiology; Carbon Dioxide/metabolism; Chlorophyll/metabolism; Cystatins/*genetics/metabolism/physiology; Droughts; Lactones/*metabolism; Oryza/genetics; Phenotype; Plant Proteins/*genetics/metabolism/physiology; Seeds/genetics/metabolism/physiology; Soybeans/*genetics/metabolism/physiology; Stress, Physiological/*genetics; cystatin; cysteine protease; drought tolerance; photosynthesis; seed protein and yield; strigolactone
Abstract Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7644 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4740
Permanent link to this record