toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Rodriguez, A.; Ruiz-Ramos, M.; Palosuo, T.; Carter, T.R.; Fronzek, S.; Lorite, I.J.; Ferrise, R.; Pirttioja, N.; Bindi, M.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hohn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P. doi  openurl
  Title Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations Type Journal Article
  Year 2019 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 264 Issue Pages 351-362  
  Keywords Wheat adaptation; Uncertainty; Climate change; Decision support; Response surface; Outcome confidence; Climate-Change Impacts; Response Surfaces; Wheat; Uncertainty; Yield; Simulation; 21St-Century; Productivity; Temperature; Projections  
  Abstract unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivwn L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.  
  Address 2019-01-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5214  
Permanent link to this record
 

 
Author Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Roetter, R.P. doi  openurl
  Title Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
  Year 2017 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 239 Issue Pages 1-14  
  Keywords Agriculture, Climate change, Crop yield, Impact and adaptation, Heat stress, Phenology; Climate-Change; Winter-Wheat; North China; Triticum-Aestivum; Crop; Production; Grain-Growth; Impacts; Trends; Heat; Management  
  Abstract Our understanding of climate impacts and adaptations on crop growth and productivity can be accelerated by analyzing historical data over the past few decades. We used crop trial and climate data from 1981 to 2009 at 34 national agro-meteorological stations in the Huang-Huai-Hai Plain (HHHP) of China to investigate the impacts of climate factors during different growth stages on the growth and yields of winter wheat, accounting for the adaptations such as shifts in sowing dates, cultivars, and agronomic management. Maximum (T-max) and minimum temperature (T-min) during the growth period of winter wheat increased significantly, by 0.4 and 0.6 degrees C/decade, respectively, from 1981 to 2009, while solar radiation decreased significantly by 0.2 MJ/m(2)/day and precipitation did not change significantly. The trends in climate shifted wheat phenology significantly at 21 stations and affected wheat yields significantly at five stations. The impacts of T-max and T-min differed in different growth stages of winter wheat. Across the stations, during 1981-2009, wheat yields increased on average by 14.5% with increasing trends in T-min over the whole growth period, which reduced frost damage, however, decreased by 3.0% with the decreasing trends in solar radiation. Trends in Tmax and precipitation had comparatively smaller impacts on wheat yields. From 1981 to 2009, climate trends were associated with a <= 30% (or <= 1.0% per year) wheat yield increase at 23 stations in eastern and southern parts of HHHP; however with a <= 30% (or <= 1.0% per year) reduction at 11 other stations, mainly in western part of HHHP. We also found that wheat reproductive growth duration increased due to shifts in cultivars and flowering date, and the duration was significantly and positively correlated with wheat yield. This study highlights the different impacts of T-max and T-min in different growth stages of winter wheat, as well as the importance of management (e.g. shift of sowing date) and cultivars shift in adapting to climate change in the major wheat production region. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-06-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4962  
Permanent link to this record
 

 
Author Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P.; Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P. doi  openurl
  Title Mitigation and quantification of greenhouse gas emissions in Mediterranean cropping systems Type Journal Article
  Year 2017 Publication Agriculture, Ecosystems & Environment Abbreviated Journal Agriculture, Ecosystems & Environment  
  Volume 238 Issue Pages 1-4  
  Keywords Climate-Change; Soil Carbon  
  Abstract  
  Address 2017-03-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4940  
Permanent link to this record
 

 
Author Wallach, D.; Mearns, L.O.; Ruane, A.C.; Rötter, R.P.; Asseng, S. doi  openurl
  Title Lessons from climate modeling on the design and use of ensembles for crop modeling Type Journal Article
  Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 139 Issue 3-4 Pages 551-564  
  Keywords change projections; elevated CO2; uncertainty; wheat; water; soil; simulations; yield; rice; 21st-century; Model ensembles; Crop models; Climate models; Model weighting; Super ensembles  
  Abstract Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.  
  Address 2017-01-06  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4933  
Permanent link to this record
 

 
Author Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M. doi  openurl
  Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
  Year 2018 Publication Land Degradation & Development Abbreviated Journal Land Degradation & Development  
  Volume 29 Issue 8 Pages 2378-2389  
  Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen  
  Abstract Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.  
  Address 2018-10-16  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1085-3278 ISBN Medium  
  Area Expedition Conference  
  Notes XC, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5210  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: