|   | 
Details
   web
Records
Author Nelson, G.C.; van der Mensbrugghe, D.; Ahammad, H.; Blanc, E.; Calvin, K.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; von Lampe, M.; Mason, d’C., Daniel; van Meijl, H.; Müller, C.; Reilly, J.; Robertson, R.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Takahashi, K.; Valin, H.; Willenbockel, D.
Title Agriculture and climate change in global scenarios: why don’t the models agree Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 85-101
Keywords climate change impacts; economic models of agriculture; scenarios; system model; demand; CMIP5
Abstract Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4536
Permanent link to this record
 

 
Author Dáder, B.; Plaza, M.; Fereres, A.; Moreno, A.
Title Flight behaviour of vegetable pests and their natural enemies under different ultraviolet-blocking enclosures Type Journal Article
Year 2015 Publication Annals of Applied Biology Abbreviated Journal Ann. Appl. Biol.
Volume 167 Issue 1 Pages 116-126
Keywords agricultural pests; insect orientation; natural enemies; photoselective enclosures; uv light; aphidius-colemani; plastic films; myzus-persicae; insect pests; frankliniella-occidentalis; trialeurodes-vaporariorum; spectral efficiency; encarsia-formosa; protect crops; greenhouse
Abstract Ultraviolet (UV) radiation, particularly in the UV-A + B range (280-400 nm) is a fraction of the solar spectrum that regulates almost every aspect of insect behaviour, including orientation towards hosts, alighting, arrestment and feeding behaviour. To study the role of UV radiation on the flight activity of five insect species of agricultural importance (pests Myzus persicae, Bemisia tabaci and Tuta absoluta, and natural enemies Aphidius colemani and Sphaerophoria rueppellii), one-chamber tunnels were covered with six cladding materials with different light transmittance properties ranging from 2% to 83% UV and 54% to 85% photosynthetically active radiation (PAR). Inside each tunnel, insects were released from tubes placed in a platform suspended from the ceiling. Specific targets varying with insect species were placed at different distances from the platform. Evaluation parameters were designed for each insect and tested separately. The ability of insects to leave the platform was assessed, as well as the number of captures, eggs or mummies in each target, either sticky traps or plants. Our results suggest differences in flight activity among insect species and UV-blocking nets. The UV-opaque film drastically prevented aphids, and whiteflies from flying outside the tubes whereas T. absoluta, syrphids and parasitoids were not affected. Aphid flight behaviour was affected by the UV-opaque film compared to the other nets, especially in the furthest target of the tunnel. Fewer aphids reached distant traps under UV-absorbing nets, and significantly more aphids could fly to the end of tunnels covered with non-UV-blocking materials. Orientation of B. tabaci and T. absoluta was also negatively affected by the UV-opaque film although in a different trend. Unlike aphids, differences in B. tabaci captures were mainly found in the closest targets. UV transmittance did not have any effects on parasitoids, and S. rueppellii, implying cues other than visual for these insects under our experimental conditions. Further effects of photoselective enclosures on greenhouse pests and their natural enemies are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-4746 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4555
Permanent link to this record
 

 
Author Kyle, P.; Müller, C.; Calvin, K.; Thomson, A.
Title Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts Type Journal Article
Year 2014 Publication Earth’s Future Abbreviated Journal Earth’s Future
Volume 2 Issue Pages 83-98
Keywords integrated assessment; climate impacts; emissions mitigation; representative concentration pathway; land-use; carbon; stabilization; cmip5
Abstract This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the representative concentration pathways (RCPs). We build on the recently completed Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to the GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6W/m(2) in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2328-4277 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4531
Permanent link to this record
 

 
Author Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; W. de Vries, W.
Title Impacts of climate and socio-economic change at farm and landscape level in the Netherlands: climate smart agriculture Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Climate-smart agriculture 2015. Global Science Conference. Montpellier, France, 2015-03-15 to 2015-03-18
Notes Approved no
Call Number MA @ admin @ Serial 2745
Permanent link to this record
 

 
Author Tao, F.; Rötter, R.P.; Palosuo, T.; Hernández, C.G.; Mínguez, M.I.; Semenov, M.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodríguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Höhn, J.G.; Ferrise, R.; Bindi, M.; Schulman, A.
Title Using crop model ensembles to design future climate-resilient barley cultivars Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin (Germany) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany
Notes Approved no
Call Number MA @ admin @ Serial 4898
Permanent link to this record