|   | 
Details
   web
Records
Author Gabaldón-Leal, C.; Ruiz-Ramos, M.; de la Rosa, R.; León, L.; Belaj, A.; Rodríguez, A.; Santos, C.; Lorite, I.J.
Title Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain: IMPACT OF CLIMATE CHANGE ON OLIVE FLOWERING IN SOUTHERN SPAIN Type Journal Article
Year 2017 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.
Volume Issue Pages 867
Keywords
Abstract Due to the severe increase projected in future temperatures and the great economic and social importance of olive growing for vast agricultural areas in the Mediterranean Basin, accurate climate change impact assessment on olive orchards is required. The aim of this study is to assess the flowering date and the impact of mean and extreme temperature events on olive flowering in southern Spain under baseline and future climate conditions. To that end, experimental data were obtained from ten olive genotypes: six well-known olive cultivars in the region, one cultivar, ‘Chiquitita’, obtained via conventional breeding, and three wild olives from the Canary Islands. A site-specific model calibration was conducted resulting in satisfactory performance with an average error of 2 days for flowering date estimation under baseline and future climate conditions, and a RMSE equal to 5.5 days in the validation process. The outputs from 12 regional climate models from the ENSEMBLES European project with a bias correction in temperature and precipitation were used. Results showed an advance in the olive flowering dates of about 17 days at the end of the 21st century compared with the baseline period (1981–2010), and an increase in the frequency of extreme events around the flowering period. A spatial analysis of results identified the areas in southern Spain that are most vulnerable to climate change impact caused by the lack of chilling hours accumulation (areas located on the Atlantic coast and the south-eastern coast) and by the occurrence of high temperatures during the flowering period (areas located in the north and north-eastern areas of the Andalusian region).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0899-8418 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4994
Permanent link to this record
 

 
Author Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A.
Title Adverse weather conditions for European wheat production will become more frequent with climate change Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 7 Pages 637-643
Keywords scenarios; increase; models; variability; responses; extremes; impacts; shifts
Abstract Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed the probability of single and multiple adverse events occurring within one season. We showed that the occurrence of adverse conditions for 14 sites representing the main European wheat-growing areas might substantially increase by 2060 compared to the present (1981-2010). This is likely to result in more frequent crop failure across Europe. This study provides essential information for developing adaptation strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4545
Permanent link to this record
 

 
Author Lorite, I.J.; García-Vila, M.; Santos, C.; Ruiz-Ramos, M.; Fereres, E.
Title AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop Type Journal Article
Year 2013 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture
Volume 96 Issue Pages 227-237
Keywords software tool; aquacrop; crop simulation model; geographic information system; spatial aggregation; fao crop model; irrigation management; iberian peninsula; southern spain; climate models; impacts; program; europe; system
Abstract The crop simulation model AquaCrop, recently developed by FAO can be used for a wide range of purposes. However, in its present form, its use over large areas or for applications that require a large number of simulations runs (e.g., long-term analysis), is not practical without developing software to facilitate such applications. Two tools for managing the inputs and outputs of AquaCrop, named AquaData and AquaGIS, have been developed for this purpose and are presented here. Both software utilities have been programmed in Delphi v. 5 and in addition, AquaGIS requires the Geographic Information System (GIS) programming tool MapObjects. These utilities allow the efficient management of input and output files, along with a GIS module to develop spatial analysis and effect spatial visualization of the results, facilitating knowledge dissemination. A sample of application of the utilities is given here, as an AquaCrop simulation analysis of impact of climate change on wheat yield in Southern Spain, which requires extensive input data preparation and output processing. The use of AquaCrop without the two utilities would have required approximately 1000 h of work, while the utilization of AquaData and AquaGIS reduced that time by more than 99%. Furthermore, the use of GIS, made it possible to perform a spatial analysis of the results, thus providing a new option to extend the use of the AquaCrop model to scales requiring spatial and temporal analyses. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4609
Permanent link to this record
 

 
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P.
Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume Issue Pages in press
Keywords
Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4985
Permanent link to this record
 

 
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P.
Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 199-208
Keywords
Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2+ Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5185
Permanent link to this record