|   | 
Details
   web
Records
Author Dumont, B.; Leemans, V.; Mansouri, M.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Parameter identification of the STICS crop model, using an accelerated formal MCMC approach Type Journal Article
Year 2014 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 52 Issue Pages 121-135
Keywords crop model; parameter estimation; bayes; stics; dream; global sensitivity-analysis; simulation-model; nitrogen balances; bayesian-approach; generic model; wheat; prediction; water; optimization; algorithm
Abstract This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modelling. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4520
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium Type Journal Article
Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 79 Issue Pages 184-196
Keywords Tactical nitrogen management; Climatic variability; Probability risk; assessment; LARS-WG; Crop model; STICS; stics crop model; generic model; simulation; yield; water; soil; fertilizer; behavior; climate; maize
Abstract Future progress in wheat yield will rely on identifying genotypes & management practices better adapted to the fluctuating environment Nitrogen (N) fertilization is probably the most important practice impacting crop growth. However, the adverse environmental impacts of inappropriate N management (e.g., lixiviation) must be considered in the decision-making process. A formal decisional algorithm was developed to tactically optimize the economic & environmental N fertilization in wheat. Climatic uncertainty analysis was performed using stochastic weather time-series (LARS-WG). Crop growth was simulated using STICS model. Experiments were conducted to support the algorithm recommendations: winter wheat was sown between 2008 & 2014 in a classic loamy soil of the Hesbaye Region, Belgium (temperate climate). Results indicated that, most of the time, the third N fertilization applied at flag-leaf stage by farmers could be reduced. Environmental decision criterion is most of the time the limiting factor in comparison to the revenues expected by farmers. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4749
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.-C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinsky, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C4.3-D1
Keywords
Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.   The model ensemble was used to simulate yields of winter and spring wheat at sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.   The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes, Figure 1) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.   Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.   Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.   The full manuscript of this study is currently under revision (Fronzek et al. 2017).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4956
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J.G.; Jurecka, F.; Kersebaum, H.-C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter, R.P.
Title Applying adaptation response surfaces for managing wheat under perturbed climate and elevated CO2 in a Mediterranean environment Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume Issue Pages C4.4-D
Keywords
Abstract This study developed Adaptation Response Surfaces and applied them to a study case in North East Spain on winter crops adaptation, using rainfed winter wheat as reference crop.  Crop responses to perturbed temperature, precipitation and CO2 were simulated by an ensemble of crop models. A set of combined changes on cultivars (on vernalisation requirements and phenology) and management (on sowing date and irrigation) were considered as adaptation options and simulated by the crop model ensemble. The discussion focused on two main issues: 1) the recommended adaptation options for different soil types and perturbation levels, and 2) the need of applying our current knowledge (AOCK) when building a crop model ensemble. The study has been published Agricultural Systems (Available online 25 January 2017, https://doi.org/10.1016/j.agsy.2017.01.009 ), and the  text below consists on extracts from that paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4955
Permanent link to this record
 

 
Author Dumont, B.
Title Uncertainty linked to crop modelling in order to develop decision support tools Type Book Whole
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 193 pp
Keywords
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Université de Liège Place of Publication Liège Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title PhD
Series Volume PhD Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 5154
Permanent link to this record