|   | 
Details
   web
Records
Author Hakala, K.; Jauhiainen, L.; Himanen, S.J.; RÖTter, R.; Salo, T.; Kahiluoto, H.
Title Sensitivity of barley varieties to weather in Finland Type Journal Article
Year 2012 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 150 Issue 02 Pages 145-160
Keywords climate-change; winter-wheat; spring wheat; reproductive growth; high-temperatures; changing climate; crop production; increased CO2; yield; tolerance
Abstract Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3-7 weeks after sowing, a temperature change 3-4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (25 degrees C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4586
Permanent link to this record
 

 
Author Kim, Y.; Seo, Y.; Kraus, D.; Klatt, S.; Haas, E.; Tenhunen, J.; Kiese, R.
Title Estimation and mitigation of N₂O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea Type Journal Article
Year 2015 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 529 Issue Pages 40-53
Keywords Agriculture; Air Pollutants/*analysis; Air Pollution/prevention & control/*statistics & numerical data; Crops, Agricultural; *Environmental Monitoring; Fertilizers; Nitrogen Dioxide/*analysis; Republic of Korea; LandscapeDNDC; Mitigation strategies; N2O; Nitrate leaching; Water quality
Abstract Considering intensive agricultural management practices and environmental conditions, the LandscapeDNDC model was applied for simulation of yields, N2O emission and nitrate leaching from major upland crops and temperate deciduous forest of the Haean catchment, South Korea. Fertilization rates were high (up to 314 kg N ha(-1) year(-1)) and resulted in simulated direct N2O emissions from potato, radish, soybean and cabbage fields of 1.9 and 2.1 kg N ha(-1) year(-1) in 2009 and 2010, respectively. Nitrate leaching was identified as the dominant pathway of N losses in the Haean catchment with mean annual rates of 112.2 and 125.4 kg N ha(-1) year(-1), causing threats to water quality and leading to substantial indirect N2O emissions of 0.84 and 0.94 kg N ha(-1) year(-1) in 2009 and 2010 as estimates by applying the IPCC EF5. Simulated N2O emissions from temperate deciduous forest were low (approx. 0.50 kg N ha(-1) year(-1)) and predicted nitrate leaching rates were even negligible (≤0.01 kg N ha(-1) year(-1)). On catchment scale more than 50% of the total N2O emissions and up to 75% of nitrate leaching originated from fertilized upland fields, only covering 24% of the catchment area. Taking into account area coverage of simulated upland crops and other land uses these numbers agree well with nitrate loads calculated from discharge and concentration measurements at the catchment outlet. The change of current agricultural management practices showed a high potential of reducing N2O emission and nitrate leaching while maintaining current crop yields. Reducing (39%) and splitting N fertilizer application into 3 times was most effective and lead to about 54% and 77% reducing of N2O emission and nitrate leaching from the Haean catchment, the latter potentially contributing to improved water quality in the Soyang River Dam, which is the major source of drinking water for metropolitan residents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4684
Permanent link to this record
 

 
Author Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A.
Title Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Type Journal Article
Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 466-467 Issue Pages 164-174
Keywords Agriculture/*methods; Air Pollutants/*metabolism; Brassica napus/growth & development/metabolism; Crops, Agricultural/growth & development/*metabolism; Gases/metabolism; Greenhouse Effect; Hordeum/growth & development/metabolism; Manure/*analysis; Nitrogen/metabolism; Nitrogen Dioxide/metabolism; Spain; Vicia/growth & development/metabolism; Zea mays/growth & development; Cover crops; GHG emissions; Green manure; Irrigation; Maize
Abstract This study evaluates the effect of planting three cover crops (CCs) (barley, Hordeum vulgare L.; vetch, Vicia villosa L.; rape, Brassica napus L.) on the direct emission of N(2)O, CO(2) and CH(4) in the intercrop period and the impact of incorporating these CCs on the emission of greenhouse gas (GHG) from the forthcoming irrigated maize (Zea mays L.) crop. Vetch and barley were the CCs with the highest N(2)O and CO(2) losses (75 and 47% increase compared with the control, respectively) in the fallow period. In all cases, fluxes of N(2)O were increased through N fertilization and the incorporation of barley and rape residues (40 and 17% increase, respectively). The combination of a high C:N ratio with the addition of an external source of mineral N increased the fluxes of N(2)O compared with -Ba and -Rp. The direct emissions of N(2)O were lower than expected for a fertilized crop (0.10% emission factor, EF) compared with other studies and the IPCC EF. These results are believed to be associated with a decreased NO(3)(-) pool due to highly denitrifying conditions and increased drainage. The fluxes of CO(2) were in the range of other fertilized crops (i.e., 1118.71-1736.52 kg CO(2)-Cha(-1)). The incorporation of CC residues enhanced soil respiration in the range of 21-28% for barley and rape although no significant differences between treatments were detected. Negative CH(4) fluxes were measured and displayed an overall sink effect for all incorporated CC (mean values of -0.12 and -0.10 kg CH(4)-Cha(-1) for plots with and without incorporated CCs, respectively).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4639
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.
Title Adapting wheat in Europe for climate change Type Journal Article
Year 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.
Volume 59 Issue 3 Pages 245-256
Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype
Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-5210 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4543
Permanent link to this record
 

 
Author Sandor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C.D.; Doro, L.; Fitton, N.; Grant, B.; Harrison, M.T.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Leonard, J.; Martin, R.; Massad, R.-S.; Moore, A.; Myrgiotis, V.; Pattey, E.; Rolinski, S.; Sharp, J.; Skiba, U.; Smith, W.; Wu, L.; Zhang, Q.; Bellocchi, G.
Title Ensemble modelling of carbon fluxes in grasslands and croplands Type Journal Article
Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 252 Issue Pages 107791
Keywords C fluxes; croplands; grasslands; multi-model ensemble; multi-model; median (mmm); soil organic-carbon; greenhouse-gas emissions; climate-change impacts; crop model; data aggregation; use efficiency; n2o emissions; maize; yield; wheat; productivity
Abstract Croplands and grasslands are agricultural systems that contribute to land–atmosphere exchanges of carbon (C). We evaluated and compared gross primary production (GPP), ecosystem respiration (RECO), net ecosystem exchange (NEE) of CO2, and two derived outputs – C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-specific, eight grassland-specific, and four models covering both systems) at three cropping sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, France and India, and two temperate permanent grasslands in France and the United Kingdom. The models were run independently over multi-year simulation periods in five stages (S), either blind with no calibration and initialization data (S1), using historical management and climate for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or with the addition of C and N fluxes (S5). Here, we provide a framework to address methodological uncertainties and contextualize results. Most of the models overestimated or underestimated the C fluxes observed during the growing seasons (or the whole years for grasslands), with substantial differences between models. For each simulated variable, changes in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble performance. Overall, the greatest improvements (MMM approaching the mean of observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP MMM was equal to 1632 g C m−2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 (average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicated that MMM outperformed individual models in 92.3 % of cases. Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-specific plant and soil observations are available for model calibration. The further development of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of the way models represent the processes underlying C fluxes in complex agricultural systems (grassland and crop rotations including fallow periods).
Address 2020-06-08
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 5230
Permanent link to this record