toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Pirttioja, N.; Carter, T.R.; & 47 al.; Rötter, R.P. url  openurl
  Title A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C4.4.3  
  Keywords  
  Abstract Impact response surfaces (IRSs) of spring and winter wheat yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect in Europe. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of 1981–2010 baseline weather.In spite of large differences in simulated yield responses to both baseline and changed climate between models, sites, crops and years, several common messages emerged. Ensemble average yields decline with higher temperatures (3–7% per 1°C) and decreased precipitation  (3–9% per 10% decrease), but benefit from increased precipitation (0-8% per 10% increase). Yields are more sensitive to temperature than precipitation changes at the Finnish site while sensitivities are mixed at the German and Spanish sites. Precipitation effects diminish under higher temperature changes. Inter-model variability is highest for baseline climate at the Spanish site, but relatively insensitive to changed climate. Modelled responses diverge most at the Finnish and German sites for winter wheat under temperature change. The IRS pattern of yield reliability tracks average yield levels. Inter-annual yield variability is more sensitive to precipitation than temperature, except at the Spanish site for spring wheat.Optimal temperatures for present-day cultivars are close to the baseline under Finnish conditions but below the baseline at the German and Spanish sites. This suggests that adoption of later maturing cultivars with higher temperature requirements might already be advantageous, and increasingly so under future warming. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2104  
Permanent link to this record
 

 
Author Rötter, R.P.; Semenov, M.A. url  openurl
  Title Development of methods for the probabilistic assessment of climate change impacts on crop production Type Report
  Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 3 Issue Pages D-C4.4.1  
  Keywords  
  Abstract Various attempts have been made to determine the relative importance of uncertainties in climate change impact assessments stemming from climate projections and crop models, respectively, and to analyse yield outputs probabilistically. For example, in the ENSEMBLES project, probabilistic climate projections (Harris et al. 2010) have been applied in conjunction with impact response surfaces (IRS), constructed by using impact models, to estimate the future likelihood (risk) of exceeding critical thresholds of crop yield impact (see, Fronzek et al., 2011, for an explanation of the method). In this task, we aimed to further develop and operationalize these methods and testing them in different case study regions in Europe. The method combines results of a sensitivity analysis of (one or more) impact model(s) with probabilistic projections of future temperature and precipitation (Fronzek et al., 2011). Such an overlay is one way of portraying probabilistic estimates of future impacts. By further accounting for the uncertainties in crop and biophysical parameters (using perturbed parameter approaches), the outcome represents an ensemble of impact risk estimates, encapsulating both climate and crop model uncertainties. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2233  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.; Christian,; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  openurl
  Title Crop modelling for integrated assessment of risk to food production from climate change Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C0.3  
  Keywords  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2089  
Permanent link to this record
 

 
Author Zander, P.; Schuler, J.; Porwollik, V.; Hecker, J.-M. url  openurl
  Title Modelling approach and first results on irrigation as climate change adaptation strategy of the project NaLaMa-nT Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The project NaLaMa-nT examines in the context of climate change sustainable development paths of land use in four different rural districts in Northern Germany. These districts were chosen along a soil-climate gradient from west to east with increasing water deficit for plant growth caused by both: decreasing rain fall and decreasing soil quality. In front of this background different trends and developments of agricultural production can be derived from analysing, modelling and comparing existing production systems and conditions of the different regions. One assumption developed from existing climate projections is that climate change will cause increasing water deficits for plant growth – especially in the eastern part of Germany. An obvious solution is to intensify agricultural production using existing irrigation methods that can reduce the yield risk and thus stabilize income from agriculture by avoiding yield failures and increasing the overall yield level. Therefore we build a modelling approach which allows an economic analysis both on the crop production activity level as well on the farm level. The data base comprises data representing recent production techniques and added optional irrigation techniques. The yields and input level changes are derived from literature studies and expert interviews. The farm structure is represented and modeled based on typical farms chosen from an IACS-data farm typology with different production potentials and patterns. First results will be presented in April.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5106  
Permanent link to this record
 

 
Author Olesen, J.E.; Porter, J.R.; Christensen, J.H. url  openurl
  Title Centre for Regional change in the Earth System Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Centre for Regionalchange in the Earth System (CRES, cres-centre.net) is funded by the DanishStrategic Research Council for the period 2009-2014 and is coordinated by theDanish Meteorological Institute. CRES has established a coordinated researcheffort aiming to improve societal preparedness for climate change, inparticular for Denmark. The overall objective of CRES is to extend knowledge ofand reduce the uncertainties surrounding regional climate change and itsimpacts and thereby support future climate change adaptation and mitigationpolicies. Some of the objectives that also have large synergies with theeffects in the CropM theme of MACSUR are a) to reduce uncertainty surroundingregional climate change and its impacts for the period 2020-2050 by improvingmodel formulation and process understanding; b) identify key changes andtipping points in the regional hydrological system, agriculture, freshwater andestuarine ecosystems caused by changes in seasonality, dynamics and extremeevents of precipitation, droughts, heat waves and sea level rise; c) quantifyconfidence and uncertainties in predictions of future regional climate and itsimpacts, by improving the statistical methodology and substance and byintegrating interdisciplinary risk analyses; d) interpret these results inrelation to risk management approaches for climate change adaptation andmitigation. Studies in CRES of particular interest to MACSUR include a)Estimation on generic crop model uncertainties in projection of climate changeimpacts on wheat year, b) Assessment of uncertainties in projected effects onwater balance, crop productivity and nitrate leaching of changes in land use,climate and assessment models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5059  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: