toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Persson, T.; Kværnø, S.; Höglind, M. url  openurl
  Title Determining the impact of soil regionalization and climate change on wheat and timothy grass yield in southeastern Norway Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Southeastern Norway is characterized by variable soils, which affect its agricultural productivity. The region is dominated by cereal production, but livestock farming with forage crops has increased the latest years. Climate and socio-economic changes could entail a shift from the current production areas of cereal and forage crops. In this study we used the mechanistic models CSM-CERES and LINGRA to evaluate impacts of climate change and soil variability on wheat and timothy yields in Akerhus and Østfold Counties in Southeastern Norway. The models were run for historical (1961-90) and projected future (2046-2065) climatic conditions, and for four soil regionalizations of different resolution (1, 5, 16 and 76 representative soil profiles). The extrapolation of soil characteristics was based on similarities in texture, organic matter, layering and water holding capacity. Across the whole region, there were small differences in both spring wheat and timothy yield between the different soil regionalization resolutions. However, within certain districts within the region the differences in wheat grain yield and timothy biomass yield among the soil resolutions were up to 20 percent. These results indicate that a relatively detailed resolution of the soil proporties is preferred to better understand the impact of shifts in production between cereals and forage grasses on yield level  if spatial variability within regions is considered. The climate change scenario used indicated increased yields of both crop types in a future climate. Further steps could include a weighting of the wheat and timothy production across soils according to economic analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5072  
Permanent link to this record
 

 
Author Olesen, J.E.; Vignjevic, M.; Wollenweber, B. url  openurl
  Title Modelling adaptation of wheat cultivar to increasing temperatures and heat stress Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Climate change is expected to lead to yield reductions in cereals due to effects on both growth duration and physiological processes affecting assimilation and translocation to grains. However, some of these negative effects may be alleviated through plant breeding. A pot experiment with selected spring wheat varieties exposed to post anthesis heat stress (35 oC for 5 days) showed that the major factor affecting variety differences in heat tolerance was related to effects on green leaf area duration after heat stress. A field experiment with the same selected spring wheat varieties showed large differences between the varieties in crop development and in biomass. The data were used to calibrate the FASSET and Sirius crop models using a sequenced calibration procedure. Both models simulated crop growth and yield well. A sensitivity analysis with increasing temperature showed declining yields for both models with higher rates of yield reduction at temperature increases above 3oC. The models agreed on the pattern of yield decline between cultivars, with larger yield declines being related to earliness. The FASSET model was further modified to simulate effects of cultivar differences in remobilization of water soluble carbohydrates and effects of post-anthesis heat stress on crop yield. Effects of variation in threshold temperature for heat stress as well as response rate are tested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5105  
Permanent link to this record
 

 
Author Olesen, J.E.; Jabloun, M.; Schelde, K. url  openurl
  Title Reconciling estimates of climate change effects on nitrate leaching from agricultural crops Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Nitrate leaching from agricultural systems constitutes a severe environmental effect in regions with valuable groundwater resources and vulnerable aquatic ecosystems. Therefore cropping systems should in many parts of Europe reduce the amount of nitrate leached from the root zone. Since soil nitrogen transformation and loss processes are highly influenced by climate, including temperature and precipitation, estimates of climate change effects on nitrate leaching is in high demand for evaluating future groundwater and surface water protection policies. Modelling studies using both the FASSET and Daisy models for cereal crops as well as arable crop rotations in Denmark have shown increased nitrate leaching under projected climate change. Sensitivity analyses using these models have shown a higher response to changes in temperature than to precipitation, although in particular precipitation responses differ between soil types. Simulations for crop rotations show that current catch crop management may not be sufficient to maintain low nitrate leaching levels in future. These effects of temperature and precipitation as well as crop management are confirmed in an empirical analysis of nitrate leaching from a long-term cropping system experiment in Denmark. The main uncertainties on climate change effects on future nitrate leaching appears to be related to effects of climate change on soil organic matter and thus on the amount of soil total N available for mineralization as well as the effects of enhanced atmospheric CO2 concentration on crop residue quality and N mineralization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5118  
Permanent link to this record
 

 
Author Mueller, C. url  openurl
  Title A crop modeling response to economists’ wishlists Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10 to 38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5048  
Permanent link to this record
 

 
Author Mereu, V.; Spano, D.; Gallo, A.; Carboni, G. url  openurl
  Title Climate change impacts and adaptation strategies evaluation on staple food crops in different agro-climatic zones Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Increasing temperatures, changed precipitation patterns and more frequent extreme events may lead to an increase in crop failure and to a substantial decrease of crop yields. The assessment of climate change impacts on agricultural sector has a particular interest to stakeholders and policy makers, in order to identify specific agricultural sectors and agro-climatic zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in different agro-climatic zones was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management. The analysis was made using the DSSAT-CSM (Decision Support System for Agrotechnology Transfer – Cropping System Model) software, version 4.5. Crop models implemented into DSSAT-CSM were used, for each selected crop, to evaluate climate change impacts on crop production. Multiple combinations of soils and climate conditions, crop management and varieties were considered for different agro-climatic zones. The climate impact was assessed using future climate projections, statistically and/or dynamically downscaled, for the specific areas. Direct and indirect effects of different CO2 concentrations, projected for the future periods, were separately explored to estimate their effects on crops. Finally, several adaptation strategies were evaluated with the aim to reduce the negative impact of climate change on crop production. The results of the study, analysed at local and regional scale, will be discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5061  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: