|   | 
Details
   web
Records
Author Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M.
Title Designing a high-yielding maize ideotype for a changing climate in Lombardy plain northern Italy Type Journal Article
Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 499 Issue Pages 497-509
Keywords Agriculture/*methods/standards; *Climate Change; Droughts; Italy; Nitrogen/analysis; Soil; Water Supply/statistics & numerical data; Zea mays/*growth & development/standards; Climate change; Crop model; Maize; Water use adaptation
Abstract • ARMOSA model simulated a maize ideotype with drought adaptation under climate change. • The ideotype needs less water for higher yield compared to current hybrids. • Higher production involves more crop residues that enhance soil C sequestration. • Soil organic C may generally decrease and N leaching will increase in sandy soil. The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030–2060 and 2070–2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha− 1), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245–565 mm y− 1). With respect to the current hybrid, the ideotype will require less irrigation water (− 13%, p < 0.01) and it resulted in significantly higher yield under water stress condition (+ 15%, p < 0.01) and optimal water supply (+ 2%, p < 0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha− 1 will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4633
Permanent link to this record
 

 
Author Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.; Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.
Title Heat stress is overestimated in climate impact studies for irrigated agriculture Type Journal Article
Year 2017 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 12 Issue 5 Pages 054023
Keywords heat stress; climate change impact assessment; irrigation; canopy temperature; CANOPY TEMPERATURE; WINTER-WHEAT; WATER-STRESS; CROP YIELDS; GROWTH; MAIZE; DROUGHT; UNCERTAINTY; ENVIRONMENT; PHENOLOGY
Abstract Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr(-1) (2%) and 0.6 Mg yr(-1) (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr (1) (16%) for irrigated winter wheat and 4.1 Mg yr (1) (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.
Address 2017-06-22
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5035
Permanent link to this record
 

 
Author Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P.
Title Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal
Volume 221 Issue Pages 142-156
Keywords ft_macsur; Agroclimatic extremes; Crop model; Heat; Drought; Heavy rain; Anthropogenic Climate-Change; Head-Emergence Frost; Weather Extremes; Wheat Yields; Temperature Variability; Induced Sterility; Food Security; Soil-Moisture; Plant-Growth; Winter-Wheat
Abstract Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5199
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R.
Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 4 Pages
Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought
Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4814
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.
Title Variability in crop yields associated with climate anomalies in China over the past three decades Type Journal Article
Year 2016 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 16 Issue 6 Pages 1715-1723
Keywords Adaptation; Climate change; Climate extremes; Drought; Impacts and vulnerability
Abstract We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.
Address 2016-06-20
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4757
Permanent link to this record