toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Banse, M. url  openurl
  Title (down) Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers – Introduction Type Conference Article
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages SP6-1  
  Keywords  
  Abstract MACSUR’s aims•To analyze the effects of climate change for farming conditions in European regions •To identify risks for farmers, to jointly develop mitigation and adaptation options•To analyze consequences of mitigation and adaptation for farming competitiveness, the environment and rural developmentMACSUR’S mission •improve and integratemodels – crop and livestock production, farms, and national & international agri-food markets•demonstrate integration and links – models for selected farming systems and regions •provide hands-on training- young and experienced researchers in integrative modelingProgramme of the workshop•Presentation of current achievements—Regional Pilots on climate adaptation —EU-level assessments •Intensive discussion with all participants—What are your knowledge needs ?—What can MACSUR-2 contribute ?—How to collaborate ?—Next steps of interaction No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Brussels Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2082  
Permanent link to this record
 

 
Author Woolnough, S. url  openurl
  Title (down) Climate Modelling and Sub-seasonal to Seasonal Prediction: Opportunities and Challenges Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-71  
  Keywords  
  Abstract Dr Steve Woolnough is a Principal Research Fellow in the Climate directorate of the National Centre for Atmospheric Science, and leads their Tropical Group. His interests are in the variability of the Tropical Climate System on intraseasonal to seasonal timescales, and the representation of the tropical climate system in weather and climate prediction models. He is a member of three international panels of the WMO including the Steering Group of their sub-seasonal to seasonal prediction project. Dr Woolnough will discuss the current state of climate modelling and introduce some of the uncertainties in prediction of regional climate change, and the opportunities to narrow these uncertainties. He will also discuss the current state of sub-seasonal to seasonal prediction and introduce the WCRP/WWRP Sub-seasonal Prediction Project, a new WMO project to promote research into and application of operational prediction systems. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2186  
Permanent link to this record
 

 
Author Biewald, A. url  openurl
  Title (down) Climate dependent equilibrium model Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-T2.3  
  Keywords  
  Abstract In the framework of AgMIP (Agricultural Model Intercomparison Project; www.agmip.org), several articles have been published in which about 10 leading, agro-economic models analysed the impact of climate change on agricultural yields, area, consumption and food prices (Lotze-Campen et al. 2014, Nelson et. al 2014a,b Schmitz et al. 2014). A part of these articles are available freely through the publisher (e.g. http://www.pnas.org/content/111/9/3274). PIK has not only contributed through model simulations with the spatially explicit, agro-economic model MAgPIE, but also by coordinating this activity. Starting with AgMIP phase II in 2015, AgMIP has now for the first time conducted the model-analysis for different “Shared Socio-economic Pathways” (short SSPs). A first study has been published in the renowned journal “Environmental Research Letters” (Wiebe et al. 2015). These are important contributions to task 2.3 which aimed at simulating the impact of global climate changes on agricultural systems.Another study which is under revision in the journal PNAS, investigates the impact of climate change on agricultural welfare. The results of this paper are based on simulations with 20 different General Circulation Models (GCMs). This provides the opportunity to understand the uncertainty inherent in the different climate models better and improves the credibility of results.All mentioned articles and results are based on harmonized yield changes, which are a result of multi-model simulations, conducted in the framework of ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) and coordinated at PIK. These model results are publicly available (www.isi-mip.org) and part of an open source strategy of the institute. The modelling group around the agro-economic model MAgPIE (Model of Agriculture and its Impact on the Environment) currently discusses an open source strategy for publishing the model code. As a first step, a detailed description of the model will be available shortly (http://redmine.pik-potsdam.de/projects/magpie/wiki).PIK and the modelling group around MAgPIE have also contributed to the geoportal GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) where project partners can publish and share global and regional data sets as well as model results on scenarios of land use, climate change and economic development. MAgPIE results on landuse change, emissions and deforestation for different socio-economic scenarios have been made available there (http://catalog-glues.ufz.de/terraCatalog/Start.do;jsessionid=80F6A3D2C446674B898881D0589887E4). No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2112  
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Wolf, J.; Britz, W.; Vries, W. de; Gaiser, T.; Hoffmann, H.; Ewert, F. url  doi
openurl 
  Title (down) Climate change impacts on European crop yields: Do we need to consider nitrogen limitation Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 123-134  
  Keywords Climate impact assessment; Nitrogen limitation; European crop yields; SIMPLACE Crop modelling framework; model calibration; winter-wheat; scale; co2; productivity; agriculture; strategies; scenarios; systems; growth  
  Abstract Global climate impact studies with crop models suggest that including nitrogen and water limitation causes greater negative climate change impacts on actual yields compared to water-limitation only. We simulated water limited and nitrogen water limited yields across the EU-27 to 2050 for six key crops with the SIMPLACE<LINTUL5, DRUNIR, HEAT> model to assess how important consideration of nitrogen limitation is in climate impact studies for European cropping systems. We further investigated how crop nitrogen use may change under future climate change scenarios. Our results suggest that inclusion of nitrogen limitation hardly changed crop yield response to climate for the spring-sown crops considered (grain maize, potato, and sugar beet). However, for winter-sown crops (winter barley, winter rapeseed and winter wheat), simulated impacts to 2050 were more negative when nitrogen limitation was considered, especially with high levels of water stress. Future nitrogen use rates are likely to decrease due to climate change for spring-sown crops, largely in parallel with their yields. These results imply that climate change impact studies for winter-sown crops should consider N-fertilization. Specification of future N fertilization rates is a methodological challenge that is likely to need integrated assessment models to address.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4726  
Permanent link to this record
 

 
Author Dono, G. url  openurl
  Title (down) Climate change impact on production and income of Mediterranean farming systems: a case study Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-17  
  Keywords  
  Abstract Adaptation to climate change calls for local responses. The impact of a 2020-30 climate scenario was assessed on a 54,000 ha Mediterranean district characterized by a variety of farming systems (FS), ranging from low-input rainfed (42% of the district area and 16% of the district net income) to high-input irrigated. Climate was generated with a Regional Atmospheric Modelling System nested into a full coupled atmosphere-ocean global simulation model, under the A1B emission scenario. Crop responses to climate were assessed using EPIC after calibration. The Temperature Humidity Index was used to assess the impact on dairy cow milk yield. Farmer choices were simulated on 13 representative FS by an hybrid model of supply, territory and farm. The adaptive choices were simulated through Discrete Stochastic Programming, fed by probability distribution functions output of crop and animal models.  The expected decrease in spring rainfall (-33%) will affect hay-crop production and the net income (NI) of rainfed livestock farms (-5 to -12%). The increased summer temperature will affect dairy cows NI up to -5.9%. Rice production is expected to increase up to +10%. Overall, the NI of irrigated and rainfed farms will be -2.1%  and -5.4% of the current NI respectively, with livestock FS being the most affected and rice and horticultural FS the most resilient. Results will provide an ideal mediating object for engaging policy makers and stakeholders in designing visionary adaptive strategies. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2132  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: