|   | 
Details
   web
Records
Author Angulo, C.; Gaiser, T.; Rötter, R.P.; Børgesen, C.D.; Hlavinka, P.; Trnka, M.; Ewert, F.
Title (down) ‘Fingerprints’ of four crop models as affected by soil input data aggregation Type Journal Article
Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 61 Issue Pages 35-48
Keywords crop model; soil data; spatial resolution; yield distribution; aggregation; us great-plains; climate-change; integrated assessment; simulating wheat; yields; scale; productivity; uncertainty; variability; responses
Abstract • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4511
Permanent link to this record
 

 
Author Lardy, R.; Bellocchi, G.; Martin, R.
Title (down) Vuln-Indices: Software to assess vulnerability to climate change Type Journal Article
Year 2015 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture
Volume 114 Issue Pages 53-57
Keywords climate change; Java; vulnerability indices; pasture simulation-model; integrated assessment; environmental-change; change impacts; system
Abstract Vuln-Indices Java-based software was developed on concepts of vulnerability to climate change of agro-ecological systems. It implements the calculation of vulnerability indices on series of state variables for assessments at both site and region levels. The tool is useful because synthetic indices help capturing complex processes and prove effective to identify the factors responsible for vulnerability and their relative importance. It is suggested that the tool may be plausible for use with stakeholders to disseminate information of climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4648
Permanent link to this record
 

 
Author Semenov, M.A.; Pilkington-Bennett, S.; Calanca, P.
Title (down) Validation of ELPIS 1980-2010 baseline scenarios using the observed European Climate Assessment data set Type Journal Article
Year 2013 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 57 Issue 1 Pages 1-9
Keywords climate change; impact assessment; downscaling; lars-wg; stochastic weather generators; diverse canadian climates; lars-wg; aafc-wg; radiation; impacts
Abstract Local-scale daily climate scenarios are required for assessment of climate change impacts. ELPIS is a repository of local-scale climate scenarios for Europe, which are based on the LARS-WG weather generator and future projections from 2 multi-model ensembles, CMIP3 and EU-ENSEMBLES. In ELPIS, the site parameters for the 1980-2010 baseline scenarios were estimated by LARS-WG using daily weather from the European Crop Growth Monitoring System (CGMS) used in many European agricultural assessment studies. The objective of this paper was to compare ELPIS baseline scenarios with observed daily weather obtained independently from the European Climate Assessment (ECA) data set. Several statistical tests were used to compare distributions of climatic variables derived from ECA-observed daily weather and ELPIS-generated baseline scenarios. About 30% of selected sites have a difference in altitude of > 50 m compared with the CGMS grid-cell altitude that was selected to represent agricultural land within a grid-cell. Differences in altitude can explain significant Kolmogorov-Smirnov test (KS-test) results for distribution of daily temperature and in t-tests for temperature monthly means, because of the well-known negative correlation between temperature and elevation. For daily precipitation, the KS-test showed little difference between generated and observed data; however, the more sensitive t-test showed significant results for the sites where altitude differences were large. Approximately 11% of sites showed small positive or negative bias in monthly solar radiation, although 86% sites showed > 3 significant t-test results for monthly means. These results can be explained by differences in conversion of sunshine hours to solar radiation used in CGMS and LARS-WG. We conclude that, considering the limitations above, ELPIS baseline scenarios are suitable for agricultural impact assessments in Europe.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4812
Permanent link to this record
 

 
Author Webber, H.; Gaiser, T.; Oomen, R.; Teixeira, E.; Zhao, G.; Wallach, D.; Zimmermann, A.; Ewert, F.
Title (down) Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume Issue Pages
Keywords crop model; impact assessment; crop water use; evapotranspiration; irrigation; drought; uncertainty
Abstract While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Newsletter July Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area CropM Expedition Conference
Notes CropM; wos; ft=macsur; Approved no
Call Number MA @ admin @ Serial 4778
Permanent link to this record
 

 
Author Doro, L.; Jones, C.; Williams, J.R.; Norfleet, M.L.; Izaurralde, R.C.; Wang, X.; Jeong, J.
Title (down) The Variable Saturation Hydraulic Conductivity Method for Improving Soil Water Content Simulation in EPIC and APEX Models Type Journal Article
Year 2017 Publication Vadose Zone Journal Abbreviated Journal Vadose Zone Journal
Volume 16 Issue 13 Pages
Keywords Conservation Effects Assessment; Runoff Simulation; Unsaturated Soils; United-States; Porous-Media; Moisture; Flow; Productivity; Transport; Denitrification
Abstract Soil water percolation is a key process in the life cycle of water in fields, watersheds, and river basins. The Environmental Policy Integrated Climate (EPIC) and the Agricultural Policy/Environmental eXtender (APEX) are continuous models developed for evaluating the environmental effects of agricultural management. Traditionally, these models have simulated soil water percolation processes using a tipping-bucket approach, with the rate of flow limited by the saturated hydraulic conductivity. This simple approach often leads to inaccuracy in simulating elevated soil water conditions where soil water content (SWC) levels may remain above field capacity under prolonged wet weather periods or limited drainage. To overcome this deficiency, a new sub-model, the variable saturation hydraulic conductivity (VSHC) method, was developed for simulating soil water percolation processes using a nonlinear equation to estimate the effective hydraulic conductivity as a function of the SWC and soil properties. The VSHC method was evaluated at three sites in the United States and two sites in Europe. In addition, a numerical solution of the Richards equation was used as a benchmark for SWC comparison. Results show that the VSHC method substantially improves the accuracy of the SWC simulation in long-term simulations, particularly during wet periods. At the watershed scale, results on the Riesel Y2 watershed indicate that the VSHC method enhances model performance in the high-flow regime of channel peak flows because of the improved estimation of SWC, which implies that the improved SWC simulation at the field scale is beneficial to hydrologic modeling at the watershed scale.
Address 2018-09-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-1663 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5208
Permanent link to this record