|   | 
Details
   web
Records
Author Ben Touhami, H.; Bellocchi, G.
Title (up) Bayesian calibration of the Pasture Simulation model (PaSim) to simulate emissions from long-term grassland sites: a European perspective Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Livestock, Climate Change and Food Security, Madrid, Spain, 2014-05-19 to 2014-05-20
Notes Approved no
Call Number MA @ admin @ Serial 2309
Permanent link to this record
 

 
Author Ben Touhami, H.; Bellocchi, G.
Title (up) Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress Type Journal Article
Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics
Volume 30 Issue Pages 356-364
Keywords Bayesian calibration framework; Grasslands; Pasture Simulation model; (PaSim); integrated assessment models; chain monte-carlo; climate-change; computation; impacts; vulnerability; likelihoods; france
Abstract As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1574-9541 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4697
Permanent link to this record
 

 
Author Minet, J.; Laloy, E.; Tychon, B.; François, L.
Title (up) Bayesian inference of a dynamic vegetation model for grassland Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract As a part of the MACSUR task L2.4, we probabilistically calibrated the CARAIB dynamic vegetation model by Markov chain Monte Carlo (MCMC) simulation with the DREAMZS sampler. CARAIB is a mechanistic model that calculates the carbon assimilation of the vegetation as a function of the soil and climatic conditions, and can thus be used for simulating grassland production under cutting or grazing management. Bayesian model inversion was performed at 4 grassland sites across Europe: Oensingen, CH; Grillenburg, DE; Laqueuille, FR and Monte-Bodone, IT. Four daily measured variables from these sites: the Gross Primary Productivity (GPP), Net Ecosystem Exchange (NEE), Evapotranspiration (ET) and Soil Water Content (SWC) were used to sample 10 parameters related to rooting depth, stomatal conductance, specific leaf area, carbon-nitrogen ratio and water stresses. The maximized likelihood function therefore involved four objectives, whereas the applied Bayesian framework allowed for assessing the so called parameter posterior probability density function (pdf), which quantifies model parameter uncertainty caused by measurement and model errors. Sampling trials were performed using merged data from all sites (all-sites-sampling) and for each site (site-specific sampling) separately. The derived posterior parameter pdfs from the all-sites sampling and site-specific sampling runs showed differences in relation with the specificities of each site. Analysis of these distributions also revealed model sensitivity to parameters conditioned on the measured data, as well as parameter correlations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5057
Permanent link to this record
 

 
Author Minet, J.; Laloy, E.; Tychon, B.; François, L.
Title (up) Bayesian inversions of a dynamic vegetation model at four European grassland sites Type Journal Article
Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 12 Issue 9 Pages 2809-2829
Keywords eddy-covariance data; terrestrial ecosystem model; bioclimatic affinity; groups; monte-carlo-simulation; dry-matter content; leaf-area; climate-change; stomatal conductance; parameter-estimation; plant
Abstract Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1726-4189 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4571
Permanent link to this record
 

 
Author Lotze-Campen, H.
Title (up) Bevölkerungswachstum und Ressourcenknappheit Type Journal Article
Year 2013 Publication AMOSinternational Abbreviated Journal AMOSinternational
Volume 7 Issue 1 Pages 13-19
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4610
Permanent link to this record