toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L. url  doi
openurl 
  Title (up) Crop rotation modelling—A European model intercomparison Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue Pages 98-111  
  Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth  
  Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4660  
Permanent link to this record
 

 
Author Zimmermann, A. url  openurl
  Title (up) Crop yield trends and variability in the EU Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-74  
  Keywords  
  Abstract Agreeing that increased future global food demand will have to be met by production intensification rather than land use expansion (e.g. Hertel, 2011), scientists have moved to empirically analyse the causes for differences between potentially attainable yields and actually realized yields – the yield gap (e.g. van Ittersum et al., 2013, Neumann et al., 2010). In the long run, we aim at disentangling the effects of biophysical, economic and political impacts and farmers’ response to them on crop yields by analysing yield gaps at regional scale in the European Union. Apart from generally improving our understanding of yield gaps and their drivers in the EU, our analysis will contribute to the integration of economic and biophysical models at a later stage of our research. As a first step towards an advanced yield gap analysis, the current paper will give an overview of yield developments in the EU27. The overview will be based on regional yield trend and yield variability estimates derived from socioeconomic panel data from the Farm Accountancy Data Network (FADN). The analysis will continue and extend the work of Ewert et al. (2005) and Reidsma et al. (2009) in terms of drawing on single farm instead of country level/farm type data, including the new EU member states and most recent years (until 2011). The EU-wide analysis of yield trends and variability will serve as a basis for the later analysis of yield gaps. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2189  
Permanent link to this record
 

 
Author Rötter, R. url  openurl
  Title (up) Crop yield variance and yield gap analysis for evaluating technological innovations under climate change: the case of Finnish barley Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-50  
  Keywords  
  Abstract The quest for sustainable intensification of agricultural systems has recently triggered research on determining and closing the gaps between farmers’ actual and potential crop yields that can be obtained under optimal management. This so-called “yield gap” is then taken as a yardstick for indicating the potential of technological innovations in agricultural production. In this paper, we argue that in order to assess risks and opportunities for technological innovations we need extra information on crop yield variances in different production situations.Starting point is to assess farmers’ actual yields using data in sufficient quality and resolutions. Crop simulation models are then applied to quantify crop yield potentials and their variances in a changing environment. Resultant information allows ex ante evaluation of innovations that aim at increasing and stabilizing yields.Here we present this approach for barley cultivation in Finland for observed (1981-2010) and future climate (projected for three time periods centered around 2025, 2055 and 2085). Mean and median levels, variances and probabilities of simulated potential and water-limited and observed farmers’ yields are generated for two contrasting regions for analysing production risks and assessing the effectiveness of alternative technologies. As farmers show different levels of risk-aversion, which influence their investments in technological innovations, a so-called ‘normal management mode’ is defined. Employing this then shows how future yields and yield variances are likely to develop under normal management. On this basis, we finally identify which future innovations have the potential to maintain or increase barley yields at acceptable risk levels. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2165  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.; Brüser, K. url  openurl
  Title (up) CropM: Understanding and Modelling Impacts of Climate Change on Crop Production Type Conference Article
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages SP6-2  
  Keywords  
  Abstract Key ambition:To developa shared comprehensive information system on the impacts of climate change on European crop production and food securityfirst shared pan-continental assessments and tools(Full) range of important crops and important crop rotationsImproved management and analysis of dataModel improvement (stresses and factors not yet accounted for)Advanced scaling methodsAdvanced link to farm and sector modelsComprehensive uncertainty assessment and reportingTo train integrative crop modelerData. for better understanding and modelling climate change impactEvaluation of data quality (platinum, gold, silver)Quantify data gaps for modellingEmpirical analysis of crop responses to past climate variability and changeObserved adaptation options and their efficacyEffect of extreme events (past analysis and projections)Climate change scenariosConcept for data management, data journalUncertaintyMethodology & protocols for uncertainty analysisMethodology for standardized model evaluationLocal-scale climate scenarios & uncertainties in climate projectionsBasic methodology for probabilistic assessment of CC impacts using impact response surfacesMethodology for probabilistic evaluation of alternative adaptation options Main aims in MACSUR2:Improve crop model to better capture extremesComplement knowledge from crop models with empirical crop-weather analysisConsider management variables in simulationsFull range of methods for analysing uncertainty in climate impact assessmentsEvaluate potential adaptation optionsContributing to cross-cutting issues and case studies.Further the links with other modelling activitiesLink local to European and global responses No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Brussels Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2083  
Permanent link to this record
 

 
Author Heinschink, K.; Sinabell, F.; Tribl, C. openurl 
  Title (up) Decomposition of variable costs in the Austrian agricultural production Type Conference Article
  Year 2015 Publication Jahrbuch der ÖGA Abbreviated Journal  
  Volume 25 Issue Pages 231-240  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Agrarian Perspectives XXIV, 25th Annual Conference of the Austrian Society of Agricultural Economics, 2015-09-16 to 2015-09-18, Prague  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 5029  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: