toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mittenzwei, K.; Persson, T.; Höglind, M.; Kværnø, S. url  doi
openurl 
  Title (down) Combined effects of climate change and policy uncertainty on the agricultural sector in Norway Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 153 Issue Pages 118-126  
  Keywords Climate change; Norway; Agriculture; Policy uncertainty; Modelling; LINGRA; CSM-CERES-Wheat; DSSAT  
  Abstract Highlights • A framework to study climate and policy uncertainty in agriculture is presented. • Combining both sources of uncertainty has ambiguous effects on agriculture. • Uncertainty needs to be highlighted in modelling tools for policy analysis. Abstract Farmers are exposed to climate change and uncertainty about how that change will develop. As farm incomes, in Norway and elsewhere, greatly depend on government subsidies, the risk of a policy change constitutes an additional uncertainty source. Hence, climate and policy uncertainty could substantially impact agricultural production and farm income. However, these sources of uncertainty have, so far, rarely been combined in food production analyses. The aim of this study was to determine the effects of a combination of policy and climate uncertainty on agricultural production, land use, and social welfare in Norway. Output yield distributions of spring wheat and timothy, a major forage grass, from simulations with the weather-driven crop models, CSM-CERES-Wheat and, LINGRA, were processed in the a stochastic version Jordmod, a price-endogenous spatial economic sector model of the Norwegian agriculture. To account for potential effects of climate uncertainty within a given future greenhouse gas emission scenario on farm profitability, effects on conditions that represented the projected climate for 2050 under the emission scenario A1B from the 4th assessment report of the Intergovernmental Panel on Climate Change and four Global Climate Models (GCM) was investigated. The uncertainty about the level of payment rates at the time farmers make their management decisions was handled by varying the distribution of payment rates applied in the Jordmod model. These changes were based on the change in the overall level of agricultural support in the past. Three uncertainty scenarios were developed and tested: one with climate change uncertainty, another with payment rate uncertainty, and a third where both types of uncertainty were combined. The three scenarios were compared with results from a deterministic scenario where crop yields and payment rates were constant. Climate change resulted in on average 9% lower cereal production, unchanged grass production and more volatile crop yield as well as 4% higher farm incomes on average compared to the deterministic scenario. The scenario with a combination of climate change and policy uncertainty increased the mean farm income more than a scenario with only one source of uncertainty. On the other hand, land use and farm labour were negatively affected under these conditions compared to the deterministic case. Highlighting the potential influence of climate change and policy uncertainty on the performance of the farm sector our results underline the potential error in neglecting either of these two uncertainties in studies of agricultural production, land use and welfare.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4986  
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title (down) Climatic risk assessment to improve nitrogen fertilisation recommendations: A strategic crop model-based approach Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 65 Issue Pages 10-17  
  Keywords climatic variability; stochastically generated weather; lars-wg; crop model; stics; nitrogen management; yield skewness; wheat yield; generic model; stics; management; variability; simulation; field; balances; impact  
  Abstract Within the context of nitrogen (N) management, since 1950, with the rapid intensification of agriculture, farmers have often applied much larger fertiliser quantities than what was required to reach the yield potential. However, to prevent pollution of surface and groundwater induced by nitrates, The European Community launched The European Nitrates Directive 91/6/76/EEC. In 2002, in Wallonia (Belgium), the Nitrates Directive has been transposed under the Sustainable Nitrogen Management in Agriculture Program (PGDA), with the aim of maintaining productivity and revenue for the country’s farmers, while reducing the environmental impact of excessive N application. A feasible approach for addressing climatic uncertainty lies in the use of crop models such as the one commonly known as STICS (simulateur multidisciplinaire pour les cultures standard). These models allow the impact on crops of the interaction between cropping systems and climatic records to be assessed. Comprehensive historical climatic records are rare, however, and therefore the yield distribution values obtained using such an approach can be discontinuous. In order to obtain better and more detailed yield distribution information, the use of a high number of stochastically generated climate time series was proposed, relying on the LARS-Weather Generator. The study focused on the interactions between varying N practices and climatic conditions. Historically and currently, Belgian farmers apply 180 kg N ha(-1), split into three equal fractions applied at the tillering, stem elongation and flag-leaf stages. This study analysed the effectiveness of this treatment in detail, comparing it to similar practices where only the N rates applied at the flag-leaf stage were modified. Three types of farmer decision-making were analysed. The first related to the choice of N strategy for maximising yield, the second to obtaining the highest net revenue, and the third to reduce the environmental impact of potential N leaching, which carries the likelihood of taxation if inappropriate N rates are applied. The results showed reduced discontinuity in the yield distribution values thus obtained. In general, the modulation of N levels to accord with current farmer practices showed considerable asymmetry. In other words, these practices maximised the probability of achieving yields that were at least superior to the mean of the distribution values, thus reducing risk for the farmers. The practice based on applying the highest amounts (60-60-100 kg N ha(-1)) produced the best yield distribution results. When simple economical criteria were computed, the 60-60-80 kg N ha(-1) protocol was found to be optimal for 80-90% of the time. There were no statistical differences, however, between this practice and Belgian farmers’ current practice. When the taxation linked to a high level of potentially leachable N remaining in the soil after harvest was considered, this methodology clearly showed that, in 3 years out of 4,30 kg N ha(-1) could systematically be saved in comparison with the usual practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4646  
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Wolf, J.; Britz, W.; Vries, W. de; Gaiser, T.; Hoffmann, H.; Ewert, F. url  doi
openurl 
  Title (down) Climate change impacts on European crop yields: Do we need to consider nitrogen limitation Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 123-134  
  Keywords Climate impact assessment; Nitrogen limitation; European crop yields; SIMPLACE Crop modelling framework; model calibration; winter-wheat; scale; co2; productivity; agriculture; strategies; scenarios; systems; growth  
  Abstract Global climate impact studies with crop models suggest that including nitrogen and water limitation causes greater negative climate change impacts on actual yields compared to water-limitation only. We simulated water limited and nitrogen water limited yields across the EU-27 to 2050 for six key crops with the SIMPLACE<LINTUL5, DRUNIR, HEAT> model to assess how important consideration of nitrogen limitation is in climate impact studies for European cropping systems. We further investigated how crop nitrogen use may change under future climate change scenarios. Our results suggest that inclusion of nitrogen limitation hardly changed crop yield response to climate for the spring-sown crops considered (grain maize, potato, and sugar beet). However, for winter-sown crops (winter barley, winter rapeseed and winter wheat), simulated impacts to 2050 were more negative when nitrogen limitation was considered, especially with high levels of water stress. Future nitrogen use rates are likely to decrease due to climate change for spring-sown crops, largely in parallel with their yields. These results imply that climate change impact studies for winter-sown crops should consider N-fertilization. Specification of future N fertilization rates is a methodological challenge that is likely to need integrated assessment models to address.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4726  
Permanent link to this record
 

 
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. doi  openurl
  Title (down) Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 81-92  
  Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254  
  Abstract Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.  
  Address 2017-11-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5178  
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. url  doi
openurl 
  Title (down) Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: yield analysis and soil fertility Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 15  
  Keywords DSSAT model; CENTURY-module; climate change; winter durum wheat; tomato, crop rotation  
  Abstract Cropping systems are affected by climate change because of the strong relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. The increasing temperatures and the reduction of available water resources may result in negative impacts on the agricultural activity in Mediterranean environments than other areas. In this study the CERES-Wheat and CROPGRO-Tomato models were used to assess the effects of climate change on winter wheat (Triticum durum L.) and processing tomato (Lycopersicon aesculentum Mill.) in one of most productive areas of Italy, located in the northern part of the Puglia region. In particular we have compared three different General Circulation Models (HadCM3, CCSM3, ECHAM5) subjected to a statistical downscaling under two future IPCC scenarios (B1 and A2). The analysis was carried out at regional scale repeating the simulations for seven homogeneous area characterizing the spatial variability of the region. In the second part of the study, considering only HadCM3 data set, climate change impact on long-term sequences of the two crops combined in three crop rotations were evaluated in terms of yield performances and soil fertility as indicated by the soil organic content of carbon and nitrogen. The comparison between GCMs showed no significant differences for winter durum wheat yield, while noticeable differences were found for yield and irrigation requirements of tomato. Under future scenarios, the production levels were reduced for tomato, whereas positive yield effects were observed for winter durum wheat. For winter durum wheat the simulation indicated that two- and three-year rotations, including one year of tomato cultivation, improved the cereal yield and this positive effect maintained its validity also in future scenarios. For both crops higher requirements of water and nitrogen were predicted under future scenarios. This result coupled with the decrease of yield caused negative reduction of water use efficiency and nitrogen use efficiency for tomato cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: