toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cassardo, C.; Andreoli, V. doi  openurl
  Title (down) On the Representativeness of UTOPIA Land Surface Model for Creating a Database of Surface Layer, Vegetation and Soil Variables in Piedmont Vineyards, Italy Type Journal Article
  Year 2019 Publication Applied Sciences-Basel Abbreviated Journal Applied Sciences-Basel  
  Volume 9 Issue 18 Pages 3880  
  Keywords land-surface; UTOPIA; NOAH; GLDAS; micrometeorology; exchanges; processes; vineyards; cabernet-sauvignon; climate-change; wine color; temperature; parameterization; simulations; circulation; balances; moisture; sunlight  
  Abstract The main aim of the paper is to show how, and how many, simulations carried out using the Land Surface Model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) are representative of the micro-meteorological conditions and exchange processes at the atmosphere/biosphere interface, with a particular focus on heat and hydrologic transfers, over an area of the Piemonte (Piedmont) region, NW Italy, which is characterized by the presence of many vineyards. Another equally important aim is to understand how much the quality of the simulation outputs was influenced by the input data, whose measurements are often unavailable for long periods over country areas at an hourly basis. Three types of forcing data were used: observations from an experimental campaign carried out during the 2008, 2009, and 2010 vegetative seasons in three vineyards, and values extracted from the freely available Global Land Data Assimilation System (GLDAS, versions 2.0 and 2.1). Since GLDAS also contains the outputs of the simulations performed using the Land Surface Model NOAH, an additional intercomparison between the two models, UTOPIA and NOAH, both driven by the same GLDAS datasets, was performed. The intercomparisons were performed on the following micro-meteorological variables: net radiation, sensible and latent turbulent heat fluxes, and temperature and humidity of soil. The results of this study indicate that the methodology of employing land surface models driven by a gridded database to evaluate variables of micro-meteorological and agronomic interest in the absence of observations is suitable and gives satisfactory results, with uncertainties comparable to measurement errors, thus, allowing us to also evaluate some time trends. The comparison between GLDAS2.0 and GLDAS2.1 indicates that the latter generally produces simulation outputs more similar to the observations than the former, using both UTOPIA and NOAH models.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5228  
Permanent link to this record
 

 
Author Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; Hatfield, J.L.; Rosenzweig, C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J. doi  openurl
  Title (down) Multimodel ensembles of wheat growth: many models are better than one Type Journal Article
  Year 2015 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 21 Issue 2 Pages 911-925  
  Keywords Climate; Climate Change; Environment; *Models, Biological; Seasons; Triticum/*growth & development; ecophysiological model; ensemble modeling; model intercomparison; process-based model; uncertainty; wheat (Triticum aestivum L.)  
  Abstract Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4665  
Permanent link to this record
 

 
Author Foyer, C.H.; Siddique, K.H.M.; Tai, A.P.K.; Anders, S.; Fodor, N.; Wong, F.-L.; Ludidi, N.; Chapman, M.A.; Ferguson, B.J.; Considine, M.J.; Zabel, F.; Prasad, P.V.V.; Varshney, R.K.; Nguyen, H.T.; Lam, H.-M. doi  openurl
  Title (down) Modelling predicts that soybean is poised to dominate crop production across Africa Type Journal Article
  Year 2019 Publication Plant Cell and Environment Abbreviated Journal Plant Cell Environ.  
  Volume 42 Issue 1 Pages 373-385  
  Keywords Climate-Change; Food Security; Sustainable Intensification; Smallholder; Farmers; Nitrogen-Fixation; Yield; Adaptation; Diversity; Impact; CO2  
  Abstract The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume-based farming is particularly important in Africa, where small-scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. Although the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land-use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, whereas crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful “soybean bonanza” across Africa necessitates an intensive research, development, extension, and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.  
  Address 2019-01-10  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7791 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5215  
Permanent link to this record
 

 
Author Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. url  doi
openurl 
  Title (down) Modelling olive trees and grapevines in a changing climate Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 387-401  
  Keywords tree crops; climate change; simulation models; crop yield; vitis-vinifera l.; air co2 enrichment; soil-water content; elevated co2; mediterranean basin; cropping systems; growth; yield; carbon; simulation  
  Abstract The models developed for simulating olive tree and grapevine yields were reviewed by focussing on the major limitations of these models for their application in a changing climate. Empirical models, which exploit the statistical relationship between climate and yield, and process based models, where crop behaviour is defined by a range of relationships describing the main plant processes, were considered. The results highlighted that the application of empirical models to future climatic conditions (i.e. future climate scenarios) is unreliable since important statistical approaches and predictors are still lacking. While process-based models have the potential for application in climate-change impact assessments, our analysis demonstrated how the simulation of many processes affected by warmer and CO2-enriched conditions may give rise to important biases. Conversely, some crop model improvements could be applied at this stage since specific sub-models accounting for the effect of elevated temperatures and CO2 concentration were already developed. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4691  
Permanent link to this record
 

 
Author Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G. url  doi
openurl 
  Title (down) Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models Type Journal Article
  Year 2016 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 215 Issue Pages 1-19  
  Keywords carbon-water fluxes; climate change; grasslands; model comparison; net ecosystem exchange; terrestrial carbon balance; pasture simulation-model; climate-change; nitrous-oxide; land-use; co2; photosynthesis; responses; water  
  Abstract Two independently developed simulation models – the grassland-specific PaSim and the biome-generic Biome-BGC MuSo (BBGC MuSo) – linking climate, soil, vegetation and management to ecosystem biogeochemical cycles were compared in a simulation of carbon (C) and water fluxes. The results were assessed against eddy-covariance flux data from five observational grassland sites representing a range of conditions in Europe: Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland. Model comparison (after calibration) gave substantial agreement, the performances being marginal to acceptable for weekly-aggregated gross primary production and ecosystem respiration (R-2 similar to 0.66 – 0.91), weekly evapotranspiration (R-2 similar to 0.78 – 0.94), soil water content in the topsoil (R-2 similar to 0.1 -0.7) and soil temperature (R-2 similar to 0.88 – 0.96). The bias was limited to the range -13 to 9 g C m(-2) week(-1) for C fluxes (-11 to 8 g C m(-2) week(-1) in case of BBGC MuSo, and -13 to 9 g C m(-2) week(-1) in case of PaSim) and -4 to 6 mm week for water fluxes (with BBGC MuSo providing somewhat higher estimates than PaSim), but some higher relative root mean square errors indicate low accuracy for prediction, especially for net ecosystem exchange The sensitivity of simulated outputs to changes in atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation indicate, with certain agreement between the two models, that C outcomes are dominated by [CO2] and temperature gradients, and are less due to precipitation. ET rates decrease with increasing [CO2] in PaSim (consistent with experimental knowledge), while lack of appropriate stomatal response could be a limit in BBGC MuSo responsiveness. Results of the study indicate that some of the errors might be related to the improper representation of soil water content and soil temperature. Improvement is needed in the model representations of soil processes (especially soil water balance) that strongly influence the biogeochemical cycles of managed and unmanaged grasslands. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: