toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bai, H.; Tao, F. doi  openurl
  Title (up) Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 211 Issue Pages 89-105  
  Keywords Adaptation; Agro-ecosystem; Climate smart agriculture; Impacts; Sustainable development; Yield gap; Past 3 Decades; Climate-Change; Winter-Wheat; Agricultural Systems; Cropping Systems; High-Temperature; Plain; Management; Cultivars; Maize  
  Abstract Agricultural production systems are facing the challenges of increasing food production while reducing environmental cost, particularly in China. To improve yield potential and eco-efficiency simultaneously for the rice-wheat rotation system in China, we investigated changes in potential yields and yield gaps based on the field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations, along with the Agricultural Production System Simulator (APSIM) rice-wheat model. We further optimized crop cultivar and sowing/transplanting date, and investigated crop yield, water and nitrogen use efficiency, and environment impact of the rice-wheat rotation system in response to water and nitrogen supply. We found that the yield gaps between potential yields and farmer’s yields were about 8101 kg/ha or 45.3% of the potential yield, which had been shrinking from 1981 to 2009. To improve yield potentials and eco-efficiency, the cultivars of rice and wheat that properly increase both radiation use efficiency and grain weight are promising. Rice cultivars breeding need to maintain the length of panicle development and reproductive phase. High-yielding wheat cultivars are characterized by medium vernalization sensitivity, low photoperiod sensitivity and short length of floral initiation phase. Proper shift in sowing date can alleviate the negative effect of climate risk. Intermittent irrigation scheme (irrigate until surface soil saturated when average water content of surface soil is < 50% of saturated water content) for rice, together with nitrogen application rate of 390-420 kg N/ha (180-210 kg N/ha for rice and 210 kg N/ha for wheat), is suggested for the rice-wheat rotation system to maintain high yield with high resource use efficiency. This suggested nitrogen application rates are lower than those currently used by many local farmers. Our findings are useful to improve yield potential and eco-efficiency for the rice-wheat rotation system in China. Furthermore, this study demonstrates an effective approach with crop modelling to design fanning system for sustainable intensification, which can be adapted to other farming systems and regions.  
  Address 2017-08-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5174  
Permanent link to this record
 

 
Author Perego, A.; Giussani, A.; Sanna, M.; Fumagalli, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. openurl 
  Title (up) The ARMOSA simulation crop model: overall features, calibration and validation results Type Journal Article
  Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 3 Issue Pages 23-38  
  Keywords simulation model; crop growth; water dynamics; nitrogen leaching; performance assessment; nitrogen dilution curve; field-scale; soil; systems; maize; water; dynamics; growth; winter; evaporation  
  Abstract ARMOSA is a dynamic simulation model which was developed to simulate crop growth and development, water and nitrogen dynamics under different pedoclimatic conditions and cropping systems in the arable land. The model is meant to be a tool for the evaluation of the impact of different crop management practices on soil nitrogen and carbon cycles and groundwater nitrate pollution. A large data set collected over three to six years from six monitoring sites in Lombardia plain was used to calibrate and validate the model parameters. Measured meteorological data, soil chemical and physical characterizations, crop-related data of different cropping systems allowed for a proper parameterization. Fit indexes showed the reliability of the model in adequately predicting crop-related variables, such as above ground biomass (RRMSE=11.18, EF=0.94, r=0.97), Leaf Area Index maximum value (RRMSE=8.24, EF=0.37, r=0.72), harvest index (RRMSE=19.4, EF=0.32, r=0.74), and crop N uptake (RRMSE=20.25, EF=0.69, r=0.85). Using two different one-year data set from each monitoring site, the model was calibrated and validated, getting to encouraging results: RRMSE=6.28, EF=0.52, r=0.68 for soil water content at different depths, and RRMSE=34.89, EF=0.59, r=0.75 for soil NO3-N content along soil profile. The simulated N leaching was in full agreement with measured data (RRMSE=26.62, EF=0.88, r=0.98).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2038-5625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4612  
Permanent link to this record
 

 
Author Moraru, P.I.; Rusu, T.; Guș, P.; Bogdan, I.; Pop, A.I. url  openurl
  Title (up) The role of minimum tillage in protecting environmental resources of the Transylvanian Plain, Romania Type Journal Article
  Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research  
  Volume 32 Issue Pages 127-135  
  Keywords minimum tillage; soil conservation; crop production; winter-wheat; systems; maize; conservation; temperature; yield; l.  
  Abstract Conservative tillage systems tested in the hilly area of the Transylvanian Plain (Romania), confirms the possibility of improving the biological, physical, chemical and technologizcal properties of the soil. Conservative components include minimum tillage systems and surface incorporation of crop residues. The minimum tillage soil systems with paraplow, chisel or rotary harrow are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. Humus content increases by 0.41%. The minimum tillage systems rebuild the soil structure (hydrostable macroagregate content increases up to 2.2% to 5.2%), improving the global drainage of soil which allows a rapid infiltration of water in soil. Water reserve, accumulated in the 0-50 cm depth is with 1-32 m(3) ha(-1) higher in the minimum tillage variants. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1222-4227 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4795  
Permanent link to this record
 

 
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H. url  doi
openurl 
  Title (up) The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
  Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change  
  Volume 18 Issue 3 Pages 337-359  
  Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge  
  Abstract We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1381-2386 1573-1596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4613  
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Wang, E.; Nendel, C.; Kersebaum, K.C.; Haas, E.; Kiese, R.; Klatt, S.; Eckersten, H.; Vanuytrecht, E.; Kuhnert, M.; Lewan, E.; Rötter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title (up) Variability of effects of spatial climate data aggregation on regional yield simulation by crop models Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 53-69  
  Keywords spatial aggregation effects; crop simulation model; input data; scaling; variability; yield simulation; model comparison; input data aggregation; systems simulation; nitrogen dynamics; data resolution; n2o emissions; winter-wheat; scale; water; impact; apsim  
  Abstract Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4694  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: