|   | 
Details
   web
Records
Author Dono, G.
Title (down) The economic impact of changes in climate variability on milk production in the area of Grana Padano Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-18
Keywords
Abstract Climate variability (CV) normally influences production and farm management, and climate change (CC) has precisely the effect of changing this variability. Thus, models that estimate the economic impact of CC, integrating with climatic models, agronomic, and livestock, must represent the implications of this variability on farm management. This study describes an economic model based on Discrete Stochastic Programming (DSP) which assesses the impact of CC on milk production in the Grana Padano area. The model is based on 23 farm typologies from FADN that represent 856 farms in Piacenza and Cremona, two of the most important provinces for Grana Padano production. The results of the model were projected at the regional scale. The climate scenarios, current and future, are generated with a Regional Atmospheric Modeling System. The forage production under these scenarios is estimated with the EPIC agronomic model. Estimates on milk production and livestock mortality are based on studies conducted in the Po valley. The nutritional needs of the cattle are estimated with the CNCPS model. Probability distribution functions (PDF) express the relations between the CV and the productive variables under both climate scenarios. These PDFs represent the expectations of farmers on the productive-climate variability in the DSP model, which is PMP calibrated based on land distribution observed in a reference year. Comparing the model results in the two scenarios indicates the effects of CC, given the opportunity to adapt the use of resources and techniques of cultivation. The structure of the model, and its economic results are presented and discussed, along with the strengths and weaknesses of this approach. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2133
Permanent link to this record
 

 
Author Kipling, R.; Topp, K.; Don, A.
Title (down) The availability of carbon sequestration data in Europe Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 4 Issue Pages D-L1.4.2
Keywords
Abstract With growing interest in the carbon sequestration potential of soils, experimental research and mapping projects have produced a wealth of datasets in this subject area. However, the coverage, quality and scope of available data vary widely across Europe, and the extent to which these data are accessible to experimental researchers and modellers is also highly variable. This report describes the availability of soil carbon data at the global and European levels, and reviews the on-line resources for accessing these data and meta-data. The extent to which researchers in the field share findings, based on institutional links in projects and on-line resources, is investigated. Future priorities for research and data accessibility relating to carbon sequestration are discussed. Many soil data resources are available online. Global and European soil data portals draw together much information from across Europe, and include the outcomes of major soil carbon mapping exercises. However, much project and national research is not accessible through these portals, and information on datasets derived from many research initiatives is difficult or impossible to locate online. Data on carbon sequestration (carbon fluxes in soils) specifically is more limited, although some such datasets are available through the general soil data resources described. Improved clarity in the presentation of research, and work to link more national and sub-national data to European and global online resources is required, with initiatives such as GSIF (Global Soil Information Facility) active in encouraging direct reporting of soil-related data at the global level. Priorities for research on SOC stocks include measuring carbon storage below the topsoil (>30cm), improving records of SOC in peatlands, improving the number and distribution of samples available for Europe-wide soil carbon mapping, and developing recognised methodological standards to allow easier comparisons of datasets. In the field of carbon sequestration research specifically, priorities include linking long-term SOC data to historical land use, developing understanding of the movement of SOC between top-soil and sub-soil and increasing dialogue between modellers and empirical researchers to improve dynamic modelling of SOC. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2214
Permanent link to this record
 

 
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P.
Title (down) Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China Type Journal Article
Year 2015 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.
Volume 208 Issue Pages 12-20
Keywords agronomic management; climate change; food security; impact; water stress; yield potential; resource use efficiency; northeast china; climate-change; food security; environmental-quality; crop productivity; plain; agriculture; management; intensification
Abstract The precise spatially explicit knowledge about crop yield potentials and yield gaps is essential to guide sustainable intensification of agriculture. In this study, the maize yield potentials from 1980 to 2008 across the major maize production regions of China were firstly estimated by county using ensemble simulation of a well-validated large scale crop model, i.e., MCWLA-Maize model. Then, the temporal and spatial patterns of maize yield potentials and yield gaps during 1980-2008 were presented and analyzed. The results showed that maize yields became stagnated at 32.4% of maize-growing areas during the period. In the major maize production regions, i.e., northeastern China, the North China Plain (NCP) and southwestern China, yield gap percentages were generally less than 40% and particularly less than 20% in some areas. By contrast, in northern and southern China, where actual yields were relatively lower, yield gap percentages were generally larger than 40%. The areas with yield gap percentages less than 20% and less than 40% accounted for 8.2% and 27.6% of maize-growing areas, respectively. During the period, yield potentials decreased in the NCP and southwestern China due to increase in temperature and decrease in solar radiation; by contrast, increased in northern, northeastern and southeastern China due to increases in both temperature and solar radiation. Yield gap percentages decreased generally by 2% per year across the major maize production regions, although increased in some areas in northern and northeastern China. The shrinking of yield gap was due to increases in actual yields and decreases in yield potentials in the NCP and southwestern China; and due to larger increases in actual yields than in yield potentials in northeastern and southeastern China. The results highlight the importance of sustainable intensification of agriculture to close yield gaps, as well as breeding new cultivars to increase yield potentials, to meet the increasing food demand. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8809 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4715
Permanent link to this record
 

 
Author Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino-San Martin, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title (down) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 87-105
Keywords climate; crop model; impact response surface; IRS; sensitivity analysis; wheat; yield; climate-change impacts; uncertainty; 21st-century; projections; simulation; growth; region
Abstract This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4662
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title (down) Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions Type Journal Article
Year 2015 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 16 Issue 4 Pages 361-384
Keywords nitrogen management; climatic variability; lars-wg weather generator; stics soil-crop model; pearson system; probability risk assessment; crop model stics; fertilizer nitrogen; generic model; wheat yield; maize; simulation; skewness; field; agriculture; scenarios
Abstract At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4519
Permanent link to this record