|   | 
Details
   web
Records
Author Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U.
Title (up) Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 5 Issue 9 Pages eaau2406
Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon
Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5227
Permanent link to this record
 

 
Author Kersebaum, K.C.; Kollas, C.; Bindi, M.; Palosuo, T.; Wu, L.; Sharif, B.; Öztürk, I.; Trnka, M.; Hlavinka, P.; Nendel, C.; Müller, C.; Waha, K.; Armas-Herrera, C.; Olesen, J.E.; Eitzinger, J.; Roggero, P.P.; Conradt, T.; Martre, P.; Ferrise, R.; Moriondo, M.; Ruiz-Ramos, M.; Ventrella, D.; Rötter, R.P.; Wegehenkel, M.; Eckersten, H.; Lorite Torres, I.J.; Hernandez, C.G.; Launay, M.; De Wit, A.; Hoffmann, H.; Weigel, H.-J.; Manderscheid, R.; Beaudoin, N.; Constantin, J.; Garcia de Cortazar-Atauri, I.; Mary, B.; Ripoche, D.; Ruget, F.
Title (up) Model inter-comparison on crop rotation effects – an intermediate report Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Data of diverse crop rotations from five locations across Europe were distributed to modelers to investigate the capability of models to handle complex crop rotations and management interactions. Crop rotations comprise various main crops (winter/spring wheat, winter/spring barley, rye, oat, maize, sugar beet, oil seed rape and potatoes) plus several catch crops. The experimental setup of the datasets included treatments such as modified soils, crops exchanged within the rotations, irrigation/rainfed, nitrogen fertilization, residue management, tillage and atmospheric CO2 concentration. 19 modeling teams registered to model either the whole rotation or single crops. Models which are capable to run the whole rotation should provide transient as well as single year simulations with a reset of initial conditions. In the first step only initial soil conditions (water and soil mineral N) of the first year and key phenological stages were provided to the modelers. For calibration, crop yields and biomass were provided for selected years but not for all seasons. In total the combination of treatments and seasons results in 301 years of simulation. Results were analyzed to evaluate the effect of transient simulation versus single-year simulation regarding crop yield, biomass, water and nitrogen balance components. Model results will be evaluated crop-specifically to identify crops with highest uncertainty and potential for model improvement. Full data will be provided to modelers for model-improvement and results will provide insights into model capabilities to reproduce treatments and crops. Further, the question of error propagation along the transient simulation of crop rotations will be addressed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5104
Permanent link to this record
 

 
Author Doltra, J.; Olesen, J.E.; Báez, D.; Louro, A.; Chirinda, N.
Title (up) Modeling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 66 Issue Pages 8-20
Keywords greenhouse gas emissions; nitrogen losses; fasset process-based model; mitigation; crop management; n2o emissions; agricultural soils; cover crops; simulation; matter; wheat; uncertainty; variability; fertilizer; rotation
Abstract Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal-based cropping systems. Forage maize was grown in a conventional dairy system at Mabegondo (NW Spain) and wheat and barley in organic and conventional crop rotations at Foulum (NW Denmark). These two European sites represent agricultural areas with high and low to moderate emission levels, respectively. Field trials included plots with and without catch crops that were fertilized with either mineral N fertilizer, cattle slurry, pig slurry or digested manure. Non-fertilized treatments were also included. Measurements of N2O fluxes during the growing cycle of all the crops at both sites were performed with the static chamber method with more frequent measurements post-fertilization and biweekly measurements when high fluxes were not expected. All cropping systems were simulated with the FASSET version 2.5 simulation model. Cumulative soil seasonal N2O emissions were about ten-fold higher at Mabegondo than at Foulum when averaged across systems and treatments (8.99 and 0.71 kg N2O-N ha(-1), respectively). The average simulated cumulative soil N2O emissions were 9.03 and 1.71 kg N2O-N ha(-1) at Mabegondo and at Foulum, respectively. Fertilization, catch crops and cropping systems had lower influence on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when soil operations, ploughing or fertilization, took place. The errors associated with simulated daily soil N2O fluxes increased with the magnitude of the emissions. For resolving causes of differences in simulated and measured fluxes more intensive and temporally detailed measurements of N2O fluxes and soil C and N dynamics would be needed. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4748
Permanent link to this record
 

 
Author Olesen, J.E.; Vignjevic, M.; Wollenweber, B.
Title (up) Modelling adaptation of wheat cultivar to increasing temperatures and heat stress Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Climate change is expected to lead to yield reductions in cereals due to effects on both growth duration and physiological processes affecting assimilation and translocation to grains. However, some of these negative effects may be alleviated through plant breeding. A pot experiment with selected spring wheat varieties exposed to post anthesis heat stress (35 oC for 5 days) showed that the major factor affecting variety differences in heat tolerance was related to effects on green leaf area duration after heat stress. A field experiment with the same selected spring wheat varieties showed large differences between the varieties in crop development and in biomass. The data were used to calibrate the FASSET and Sirius crop models using a sequenced calibration procedure. Both models simulated crop growth and yield well. A sensitivity analysis with increasing temperature showed declining yields for both models with higher rates of yield reduction at temperature increases above 3oC. The models agreed on the pattern of yield decline between cultivars, with larger yield declines being related to earliness. The FASSET model was further modified to simulate effects of cultivar differences in remobilization of water soluble carbohydrates and effects of post-anthesis heat stress on crop yield. Effects of variation in threshold temperature for heat stress as well as response rate are tested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5105
Permanent link to this record
 

 
Author Kersebaum, C.; Kollas, C.; Bindi, M.; Nendel, C.; Ferrise, R.; Moriondo, M.; Olesen, J.E.; Sharif, B.; Öztürk, I.; Hoffmann, H.; Launay, M.; Ripoche, D.; Ruget, F.; Bertuzzi, P.; Cortazar, I.G.D.; Beaudoin, N.; Armas-Herrera, C.; Mary, B.; Müller, C.; Waha, K.; Ventrella, D.; Palosuo, T.; Rötter, R.; Trnka, M.; Hlavinka, P.; Wu, L.; Wegehenkel, M.; Mirschel, W.; Conradt, T.; Wechsung, F.; Weigel, H.-J.; Manderscheid, R.; Eitzinger, J.
Title (up) Modelling complex crop rotations and management across sites in Europe with an ensemble of models Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ASA-CSSA-SSSA Int. Annual Meeting, Long Beach, CA, 2-5 November 2014, 2014-11-02 to 2014-11-05
Notes Approved no
Call Number MA @ admin @ Serial 2526
Permanent link to this record