|   | 
Details
   web
Records
Author Zhao, G.; Hoffmann, H.; Yeluripati, J.; Xenia, S.; Nendel, C.; Coucheney, E.; Kuhnert, M.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Kiese, R.; Eckersten, H.; Haas, E.; Cammarano, D.; Kassie, B.; Moriondo, M.; Trombi, G.; Bindi, M.; Biernath, C.; Heinlein, F.; Klein, C.; Priesack, E.; Lewan, E.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Asseng, S.; Siebert, S.; Gaiser, T.; Ewert, F.
Title (down) Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops Type Journal Article
Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 80 Issue Pages 100-112
Keywords Crop model; Stratified random sampling; Simple random sampling; Clustering; Up-scaling; Model comparison; Precision gain; species distribution models; systems simulation; weather data; large-scale; design; soil; optimization; growth; apsim; autocorrelation
Abstract We compared the precision of simple random sampling (SimRS) and seven types of stratified random sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, especially when the sensitivity behavior of a crop model is known.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4724
Permanent link to this record
 

 
Author Hoffmann, H.
Title (down) Effects of soil and climate input data aggregation on modelling regional crop yields Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-22
Keywords
Abstract Climate and soil data at coarse resolution are often used as input for crop models in order to simulate crop yields at larger scales, e.g. at regional or national level, potentially leading to biased yield estimates. While the response to data resolution differs between crop models, it is unknown how the spatial aggregation of different types of input data interacts and contributes to this so-called aggregation effect. An ensemble of crop models was run with soil and climate input data at different spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. For this purpose, climate time series were averaged spatially and soil data was aggregated by selecting the dominant soil type with a representative soil profile based on a soil map at the scale of 1:50,000. Yields of winter wheat and silage maize were simulated under potential, water-limited and water-nitrogen-limited production conditions. Crop yields from soil and climate aggregation were evaluated separately.Mean of crop yields of the region and over the simulation period were reasonably reproduced by most models regardless of input data resolution, either using aggregated soil or climate as input. However, larger aggregation effects were observed at higher temporal resolution (e.g. annual yields). Models revealed similar spatial patterns in yield. Being distinct for soil and climate aggregation, these patterns indicate a larger impact of soil aggregation on the spatial distribution of simulated crop yield for this region. Additionally, models differed considerably in their susceptibility to input data aggregation. The results reveal the importance of model ensemble assessments and the relevance of data aggregation when short simulation periods are considered. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2137
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Sosa, C.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Grosz, B.; Dechow, R.; Kuhnert, M.; Yeluripati, J.; Kiese, R.; Haas, E.; Klatt, S.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Vanuytrecht, E.; Tao, F.; Rötter, R.; Cammarano, D.; Asseng, S.; Weihermüller, L.; Siebert, S.; Gaiser, T.; Ewert, F.
Title (down) Effects of soil and climate input data aggregation on modelling regional crop yields Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title MACSUR Science Conference
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference, 2015-04-08 to 2015-04-10, Reading, United Kingdom
Notes Approved no
Call Number MA @ admin @ Serial 5037
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.A.U.-, C.J.; Teixeira, E.; Grosz, B.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Rötter, R.; Wallach, D.; Gaiser, T.; Ewert, F.
Title (down) Effects of climate input data aggregation on modelling regional crop yields Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title CropM International Symposium and Workshop
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CropM International Symposium and Workshop, 2014-02-10 to 2014-02-12, Oslo, Norway
Notes Approved no
Call Number MA @ admin @ Serial 5044
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Nendel, C.; Kiese, R.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Wang, E.; Zhao, Z.; Ewert, F.
Title (down) Effects of climate input data aggregation on modelling regional crop yields Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Crop models can be sensitive to climate input data aggregation and this response may differ among models. This should be considered when applying field-scale models for assessment of climate change impacts on larger spatial scales or when coupling models across scales. In order to evaluate these effects systematically, an ensemble of ten crop models was run with climate input data on different spatial aggregations ranging from 1, 10, 25, 50 and 100 km horizontal resolution for the state of North Rhine-Westphalia, Germany. Models were minimally calibrated to typical sowing and harvest dates, and crop yields observed in the region, subsequently simulating potential, water-limited and nitrogen-limited production of winter wheat and silage maize for 1982-2011. Outputs were analysed for 19 variables (yield, evapotranspiration, soil organic carbon, etc.). In this study the sensitivity of the individual models and the model ensemble in response to input data aggregation is assessed for crop yield. Results show that the mean yield of the region calculated from climate time series of 1 km horizontal resolution changes only little when using climate input data of higher aggregation levels for most models. However, yield frequency distributions change with aggregation, resembling observed data better with increasing resolution. With few exceptions, these results apply to the two crops and three production situations (potential, water-, nitrogen-limited) and across models including the model ensemble, regardless of differences among models in simulated yield levels and spatial yield patterns. Results of this study improve the confidence of using crop models at varying scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5077
Permanent link to this record