toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. url  doi
openurl 
  Title (up) Modelling olive trees and grapevines in a changing climate Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 387-401  
  Keywords tree crops; climate change; simulation models; crop yield; vitis-vinifera l.; air co2 enrichment; soil-water content; elevated co2; mediterranean basin; cropping systems; growth; yield; carbon; simulation  
  Abstract The models developed for simulating olive tree and grapevine yields were reviewed by focussing on the major limitations of these models for their application in a changing climate. Empirical models, which exploit the statistical relationship between climate and yield, and process based models, where crop behaviour is defined by a range of relationships describing the main plant processes, were considered. The results highlighted that the application of empirical models to future climatic conditions (i.e. future climate scenarios) is unreliable since important statistical approaches and predictors are still lacking. While process-based models have the potential for application in climate-change impact assessments, our analysis demonstrated how the simulation of many processes affected by warmer and CO2-enriched conditions may give rise to important biases. Conversely, some crop model improvements could be applied at this stage since specific sub-models accounting for the effect of elevated temperatures and CO2 concentration were already developed. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4691  
Permanent link to this record
 

 
Author Klosterhalfen, A.; Herbst, M.; Weihermueller, L.; Graf, A.; Schmidt, M.; Stadler, A.; Schneider, K.; Subke, J.-A.; Huisman, J.A.; Vereecken, H. doi  openurl
  Title (up) Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands Type Journal Article
  Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 363 Issue Pages 137-156  
  Keywords AgroC; Soil respiration; Carbon balance; Winter wheat; Grassland; NEE; LOLIUM-PERENNE L; SOIL HETEROTROPHIC RESPIRATION; LAND-SURFACE MODELS; EDDY-COVARIANCE; WINTER-WHEAT; CARBOHYDRATE CONTENT; TURNOVER MODEL; ROTHC MODEL; ROOT RATIOS; CO2 EFFLUX  
  Abstract Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-11-09  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 5216  
Permanent link to this record
 

 
Author Comadira, G.; Rasool, B.; Karpinska, B.; Morris, J.; Verrall, S.R.; Hedley, P.E.; Foyer, C.H.; Hancock, R.D. url  doi
openurl 
  Title (up) Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3639-3655  
  Keywords Animals; Aphids/drug effects/*physiology; Biomass; Carbon/pharmacology; Chlorophyll/metabolism; Cluster Analysis; *Disease Resistance/drug effects; Gases/metabolism; Gene Expression Regulation, Plant/drug effects; Hordeum/drug effects/genetics/*parasitology; Nitrogen/*deficiency/metabolism/pharmacology; Oxidation-Reduction/drug effects; Photosynthesis/drug effects; Plant Diseases/genetics/*parasitology; Plant Leaves/drug effects/genetics/metabolism; Plant Proteins/genetics/metabolism; Plant Shoots/drug effects/metabolism; RNA, Messenger/genetics/metabolism; Secondary Metabolism/drug effects; Seedlings/drug effects/*metabolism/*parasitology; Signal Transduction/drug effects; Thylakoids/drug effects/metabolism/parasitology; Transcription Factors/metabolism; Transcriptome/genetics; Cross-tolerance; Myzus persicae; kinase cascades; metabolite profiles; nitrogen limitation; oxidative stress; sugar signalling  
  Abstract Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4787  
Permanent link to this record
 

 
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W. url  doi
openurl 
  Title (up) Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
  Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 120 Issue Pages 61-75  
  Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations  
  Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4737  
Permanent link to this record
 

 
Author Webber, H.; White, J.W.; Kimball, B.A.; Ewert, F.; Asseng, S.; Rezaei, E.E.; Pinter, P.J., Jr.; Hatfield, J.L.; Reynolds, M.P.; Ababaei, B.; Bindi, M.; Doltra, J.; Ferrise, R.; Kage, H.; Kassie, B.T.; Kersebaum, K.-C.; Luig, A.; Olesen, J.E.; Semenov, M.A.; Stratonovitch, P.; Ratjen, A.M.; LaMorte, R.L.; Leavitt, S.W.; Hunsaker, D.J.; Wall, G.W.; Martre, P. doi  openurl
  Title (up) Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 216 Issue Pages 75-88  
  Keywords Heat stress; Crop model improvement; Heat and drought interactions; Climate change impact assessments; Canopy temperature; Wheat; Air CO2 Enrichment; Elevated Carbon-Dioxide; Water-Use Efficiency; Climate-Change; Wheat Evapotranspiration; Stomatal Conductance; Multimodel Ensembles; Farming Systems; Drought-Stress; Spring Wheat  
  Abstract Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.  
  Address 2018-02-19  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5189  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: