|   | 
Details
   web
Records
Author Sanz-Cobena, A.; Misselbrook, T.H.; Hernaiz, P.; Vallejo, A.
Title (down) Impact of rainfall to the effectiveness of pig slurry shallow injection method for NH3 mitigation in a Mediterranean soil Type Journal Article
Year 2019 Publication Atmospheric Environment Abbreviated Journal Atm. Environ.
Volume 216 Issue Pages 116913
Keywords ammonia; micrometeorological method; slurry incorporation; trade-offs; nitrous oxide; mediterranean agroecosystems; nitrous-oxide emissions; field-applied manure; organic fertilizers; ammonia emissions; methane emissions; N2O emissions; animal manures; management; losses; grassland
Abstract Ammonia emission from fertilized cropping systems is an important concern for stakeholders, particularly in regions with high livestock densities producing large amounts of manure. Application of pig slurries can result in very large losses of N through NH3 volatilization, thus decreasing the N use efficiency (NUE) of the applied manure. Shallow incorporation has been shown to significantly abate these losses. In this field study, we assessed the impact of contrasting weather conditions on the effectiveness of shallow injection to abate NH3 emissions from pig slurry application to a Mediterranean soil. As potential trade-offs of NH3 abatement, greenhouse gas emissions were also measured under conditions of high soil moisture. Compared with surface application of slurry, shallow injection effectively and significantly decreased NH3 losses independently of weather conditions, but reductions of NH3 emission were greater after heavy rainfall. In contrast, under these conditions, shallow injection triggered higher emissions of N2O and CH4. Our findings reinforce the idea that any single-pollutant abatement strategy needs to be designed and assessed in a regional context and considering potential trade-offs in the form of other pollutants.
Address 2020-06-08
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5234
Permanent link to this record
 

 
Author Özkan, Ş.; Ahmadi, B.V.; Bonesmo, H.; Østerås, O.; Stott, A.; Harstad, O.M.
Title (down) Impact of animal health on greenhouse gas emissions Type Journal Article
Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 6 Issue 01 Pages 24-25
Keywords dairy; GHG emissions; cull rate; health; HolosNor
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-4700 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4573
Permanent link to this record
 

 
Author Kim, D.-G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A.
Title (down) Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research Type Journal Article
Year 2016 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 13 Issue 16 Pages 4789-4809
Keywords nitrous-oxide emissions; soil CO2 efflux; N2O emissions; carbon-dioxide; agroforestry residues; improved-fallow; disturbance gradient; fertilizer; nitrogen; sampling frequency; gaseous emissions
Abstract This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural ecosystems and agricultural lands. The available data are used to synthesize current understanding of the drivers of change in GHG emissions, outline the knowledge gaps, and suggest future directions and strategies for GHG emission research. GHG emission data were collected from 75 studies conducted in 22 countries (n = 244) in sub-Saharan Africa (SSA). Carbon dioxide (CO2) emissions were by far the largest contributor to GHG emissions and global warming potential (GWP) in SSA natural terrestrial systems. CO2 emissions ranged from 3.3 to 57.0 Mg CO2 ha(-1) yr(-1), methane (CH4) emissions ranged from -4.8 to 3.5 kg ha(-1) yr(-1) (-0.16 to 0.12 Mg CO2 equivalent (eq.) ha(-1) yr(-1)), and nitrous oxide (N2O) emissions ranged from -0.1 to 13.7 kg ha(-1) yr(-1) (-0.03 to 4.1 Mg CO2 eq. ha(-1) yr(-1)). Soil physical and chemical properties, rewetting, vegetation type, forest management, and land-use changes were all found to be important factors affecting soil GHG emissions from natural terrestrial systems. In aquatic systems, CO2 was the largest contributor to total GHG emissions, ranging from 5.7 to 232.0 Mg CO2 ha(-1) yr(-1), followed by -26.3 to 2741.9 kgCH(4) ha(-1) yr(-1) (-0.89 to 93.2 Mg CO2 eq. ha(-1) yr(-1)) and 0.2 to 3.5 kg N2O ha(-1) yr(-1) (0.06 to 1.0 Mg CO2 eq. ha(-1) yr(-1)). Rates of all GHG emissions from aquatic systems were affected by type, location, hydrological characteristics, and water quality. In croplands, soil GHG emissions were also dominated by CO2, ranging from 1.7 to 141.2 Mg CO2 ha(-1) yr(-1), with -1.3 to 66.7 kgCH(4) ha(-1) yr(-1) (-0.04 to 2.3 Mg CO2 eq. ha(-1) yr(-1)) and 0.05 to 112.0 kg N2O ha(-1) yr(-1) (0.015 to 33.4 Mg CO2 eq. ha(-1) yr(-1)). N2O emission factors (EFs) ranged from 0.01 to 4.1 %. Incorporation of crop residues or manure with inorganic fertilizers invariably resulted in significant changes in GHG emissions, but results were inconsistent as the magnitude and direction of changes were differed by gas. Soil GHG emissions from vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha(-1) yr(-1) and 53.4 to 177.6 kg N2O ha(-1) yr(-1) (15.9 to 52.9 Mg CO2 eq. ha(-1) yr(-1)) and N2O EFs ranged from 3 to 4 %. Soil CO2 and N2O emissions from agroforestry were 38.6 Mg CO2 ha(-1) yr(-1) and 0.2 to 26.7 kg N2O ha(-1) yr(-1) (0.06 to 8.0 Mg CO2 eq. ha(-1) yr(-1)), respectively. Improving fallow with nitrogen (N)-fixing trees led to increased CO2 and N2O emissions compared to conventional croplands. The type and quality of plant residue in the fallow is an important control on how CO2 and N2O emissions are affected. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha(-1) yr(-1) and increased exponentially with N application rates up to 300 kg N ha(-1) yr(-1). The lowest yield-scaled N2O emissions were reported with N application rates ranging between 100 and 150 kg N ha(-1). Overall, total CO2 eq. emissions from SSA natural ecosystems and agricultural lands were 56.9 +/- 12.7 x 10(9) Mg CO2 eq. yr(-1) with natural ecosystems and agricultural lands contributing 76.3 and 23.7 %, respectively. Additional GHG emission measurements are urgently required to reduce uncertainty on annual GHG emissions from the different land uses and identify major control factors and mitigation options for low-emission development. A common strategy for addressing this data gap may include identifying priorities for data acquisition, utilizing appropriate technologies, and involving international networks and collaboration.
Address 2016-10-18
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1726-4170 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4687
Permanent link to this record
 

 
Author Leclère, D.; Jayet, P.-A.; de Noblet-Ducoudré, N.
Title (down) Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change Type Journal Article
Year 2013 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 87 Issue Pages 1-14
Keywords climate change; agriculture; europe; residual impact; autonomous adaptation; water use efficiency; modeling; land-use; integrated assessment; future scenarios; change impacts; model; vulnerability; performance; emissions; nitrogen; lessons
Abstract The impact of climate change on European agriculture is subject to a significant uncertainty, which reflects the intertwined nature of agriculture. This issue involves a large number of processes, ranging from field to global scales, which have not been fully integrated yet. In this study, we intend to help bridging this gap by quantifying the effect of farm-scale autonomous adaptations in response to changes in climate. To do so, we use a modelling framework coupling the STICS generic crop model to the AROPAj microeconomic model of European agricultural supply. This study provides a first estimate of the role of such adaptations, consistent at the European scale while detailed across European regions. Farm-scale autonomous adaptations significantly alter the impact of climate change over Europe, by widely alleviating negative impacts on crop yields and gross margins. They significantly increase European production levels. However, they also have an important and heterogeneous impact on irrigation water withdrawals, which exacerbate the differences in ambient atmospheric carbon dioxide concentrations among climate change scenarios. (c) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4606
Permanent link to this record
 

 
Author Jayet, P.; Petsakos, A.
Title (down) Evaluating the efficiency of a uniform N-input tax under different policy scenarios at different scales Type Journal Article
Year 2013 Publication Environmental Modelling & Assessment Abbreviated Journal Environmental Modelling & Assessment
Volume 18 Issue 1 Pages 57-72
Keywords Bioeconomic model; Mathematical; programming; Nitrogen response curves; Nitrate emissions; Nitrogen tax
Abstract Nitrate pollution from agriculture is an important environmental externality, caused by the excessive use of fertilizers. The internalization of this problem, via a tax on mineral nitrogen, could lead to a second best solution, reducing nitrate emissions. Several authors suggest that a reduction in agricultural support could produce similar results. In this paper, we examine the effects of different levels of a uniformly implemented nitrogen tax in France under two policy scenarios, corresponding to post Agenda 2000 and 2003 Luxembourg reforms of European Union ’ s Common Agricultural Policy, in order to reveal the synergies and conflicts between the tax and the policy scenarios in terms of nitrate emissions abatement. The analysis is performed at different geographical scales, from the national to the regional and is based on a bioeconomic approach that involves the coupling of the economic model AROPAj with the crop model STICS. Results show that the efficiency of the N-tax varies according to the geographical scale of the analysis and the type of farming. Furthermore, we prove that a uniform implementation may lead to perverse effects that should always be taken into account when introducing second-best instruments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4605
Permanent link to this record