|   | 
Details
   web
Records
Author Angulo, C.; Rötter, R.; Trnka, M.; Pirttioja, N.; Gaiser, T.; Hlavinka, P.; Ewert, F.
Title (down) Characteristic ‘fingerprints’ of crop model responses to weather input data at different spatial resolutions Type Journal Article
Year 2013 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 49 Issue Pages 104-114
Keywords crop model; weather data resolution; aggregation; yield distribution; climate-change scenarios; areal unit problem; simulation-model; winter-wheat; system model; impacts; europe; yield; productivity; precipitation
Abstract Crop growth simulation models are increasingly used for regionally assessing the effects of climate change and variability on crop yields. These models require spatially and temporally detailed, location-specific, environmental (weather and soil) and management data as inputs, which are often difficult to obtain consistently for larger regions. Aggregating the resolution of input data for crop model applications may increase the uncertainty of simulations to an extent that is not well understood. The present study aims to systematically analyse the effect of changes in the spatial resolution of weather input data on yields simulated by four crop models (LINTUL-SLIM, DSSAT-CSM, EPIC and WOFOST) which were utilized to test possible interactions between weather input data resolution and specific modelling approaches representing different degrees of complexity. The models were applied to simulate grain yield of spring barley in Finland for 12 years between 1994 and 2005 considering five spatial resolutions of daily weather data: weather station (point) and grid-based interpolated data at resolutions of 10 km x 10 km; 20 km x 20 km; 50 km x 50 km and 100 km x 100 km. Our results show that the differences between models were larger than the effect of the chosen spatial resolution of weather data for the considered years and region. When displaying model results graphically, each model exhibits a characteristic ‘fingerprint’ of simulated yield frequency distributions. These characteristic distributions in response to the inter-annual weather variability were independent of the spatial resolution of weather input data. Using one model (LINTUL-SLIM), we analysed how the aggregation strategy, i.e. aggregating model input versus model output data, influences the simulated yield frequency distribution. Results show that aggregating weather data has a smaller effect on the yield distribution than aggregating simulated yields which causes a deformation of the model fingerprint. We conclude that changes in the spatial resolution of weather input data introduce less uncertainty to the simulations than the use of different crop models but that more evaluation is required for other regions with a higher spatial heterogeneity in weather conditions, and for other input data related to soil and crop management to substantiate our findings. Our results provide further evidence to support other studies stressing the importance of using not just one, but different crop models in climate assessment studies. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4598
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Leemans, V.; Destain, M.-F.
Title (down) Bayesian methods for predicting LAI and soil water content Type Journal Article
Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 15 Issue 2 Pages 184-201
Keywords crop model; bayes; data assimilation; extended kalman filtering; particle filtering; variational filtering; leaf-area index; parameter-estimation; crop models; moisture; instruments; management; sensors; state
Abstract LAI of winter wheat (Triticum aestivum L.) and soil water content of the topsoil (200 mm) and of the subsoil (500 mm) were considered as state variables of a dynamic soil-crop system. This system was assumed to progress according to a Bayesian probabilistic state space model, in which real values of LAI and soil water content were daily introduced in order to correct the model trajectory and reach better future evolution. The chosen crop model was mini STICS which can reduce the computing and execution times while ensuring the robustness of data processing and estimation. To predict simultaneously state variables and model parameters in this non-linear environment, three techniques were used: extended Kalman filtering (EKF), particle filtering (PF), and variational filtering (VF). The significantly improved performance of the VF method when compared to EKF and PF is demonstrated. The variational filter has a low computational complexity and the convergence speed of states and parameters estimation can be adjusted independently. Detailed case studies demonstrated that the root mean square error of the three estimated states (LAI and soil water content of two soil layers) was smaller and that the convergence of all considered parameters was ensured when using VF. Assimilating measurements in a crop model allows accurate prediction of LAI and soil water content at a local scale. As these biophysical properties are key parameters in the crop-plant system characterization, the system has the potential to be used in precision farming to aid farmers and decision makers in developing strategies for site-specific management of inputs, such as fertilizers and water irrigation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4629
Permanent link to this record
 

 
Author Minet, J.; Laloy, E.; Tychon, B.; François, L.
Title (down) Bayesian inversions of a dynamic vegetation model at four European grassland sites Type Journal Article
Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 12 Issue 9 Pages 2809-2829
Keywords eddy-covariance data; terrestrial ecosystem model; bioclimatic affinity; groups; monte-carlo-simulation; dry-matter content; leaf-area; climate-change; stomatal conductance; parameter-estimation; plant
Abstract Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1726-4189 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4571
Permanent link to this record
 

 
Author Savary, S.; Jouanin, C.; Félix, I.; Gourdain, E.; Piraux, F.; Brun, F.; Willocquet, L.
Title (down) Assessing plant health in a network of experiments on hardy winter wheat varieties in France: patterns of disease-climate associations Type Journal Article
Year 2016 Publication European Journal of Plant Pathology Abbreviated Journal Eur. J. Plant Pathol.
Volume 146 Issue Pages 741-755
Keywords Puccinia triticina; Puccinia striiformis; Fusarium graminearum; Fusarium culmorum; Fusarium avenaceum; Blumeria graminis; Zymoseptoria tritici; Categorical data; Risk factor; Multiple pathosystem; Correspondence analysis; Logistic regression
Abstract A data set generated by a multi-year (2003–2010) and multi-site network of experiments on winter wheat varieties grown at different levels of crop management is analysed in order to assess the importance of climate on the variability of wheat health. Wheat health is represented by the multiple pathosystem involving five components: leaf rust, yellow rust, fusarium head blight, powdery mildew, and septoria tritici blotch. An overall framework of associations between multiple diseases and climate variables is developed. This framework involves disease levels in a binary form (i.e. epidemic vs. non-epidemic) and synthesis variables accounting for climate over spring and early summer. The multiple disease-climate pattern of associations of this framework conforms to disease-specific knowledge of climate effects on the components of the pathosystem. It also concurs with a (climate-based) risk factor approach to wheat diseases. This report emphasizes the value of large scale data in crop health assessment and the usefulness of a risk factor approach for both tactical and strategic decisions for crop health management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1873 1573-8469 ISBN Medium
Area CropM Expedition Conference
Notes CropMwp;wos; ftnot_macsur; Approved no
Call Number MA @ admin @ Serial 4755
Permanent link to this record
 

 
Author Kanellopoulos, A.; Reidsma, P.; Wolf, J.; van Ittersum, M.K.
Title (down) Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling Type Journal Article
Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 52 Issue Pages 69-80
Keywords integrated assessment; data envelopment analysis; farm adaptation; farm model; technical efficiency; agricultural land-use; integrated assessment; european-community; future; crop; efficiency; impacts; systems
Abstract Future farming systems are challenged to adapt to the changing socio-economic and bio-physical environment in order to remain competitive and to meet the increasing requirements for food and fibres. The scientific challenge is to evaluate the consequences of predefined scenarios, identify current “best” practices and explore future adaptation strategies at farm level. The objective of this article is to assess the impact of different climate change and socio-economic scenarios on arable farming systems in Flevoland (the Netherlands) and to explore possible adaptation strategies. Data Envelopment Analysis was used to identify these current “best” practices while bio-economic modelling was used to calculate a number of important economic and environmental indicators in scenarios for 2050. Relative differences between yields with and without climate change and technological change were simulated with a crop bio-physical model and used as a correction factors for the observed crop yields of current “best” practices. We demonstrated the capacity of the proposed methodology to explore multiple scenarios by analysing the importance of drivers of change, while accounting for variation between individual farms. It was found that farmers in Flevoland are in general technically efficient and a substantial share of the arable land is currently under profit maximization. We found that climate change increased productivity in all tested scenarios. However, the effects of different socio-economic scenarios (globalized and regionalized economies) on the economic and environmental performance of the farms were variable. Scenarios of a globalized economy where the prices of outputs were simulated to increase substantially might result in increased average gross margin and lower average (per ha) applications of crop protection and fertilizers. However, the effects might differ between different farm types. It was found that, the abolishment of sugar beet quota and changes of future prices of agricultural inputs and outputs in such socio-economic scenario (i.e. globalized economy) caused a decrease in gross margins of smaller (in terms of economic size) farms, while gross margin of larger farms increased. In scenarios where more regionalized economies and a moderate climate change are assumed, the future price ratios between inputs and outputs are shown to be the key factors for the viability of arable farms in our simulations. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4526
Permanent link to this record