toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lehtonen, H. url  openurl
  Title (up) Pilot study at North Savo region Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-35  
  Keywords  
  Abstract Feed crop cultivation dominates land use in North Savo region where the value of dairy milk and beef production is approx. 70 % of the total value of agricultural production. Grass silage is produced on cultivated grasslands through grass-cereal rotations. There are restricted or no markets for silage. Dairy and beef farms, directly dependent on the quantity and quality of silage, are vulnerable to adverse weather conditions. Long-term viability of farming is dependent on the long-term productivity development of feed crop production, and ability to cope with adverse weather conditions, affecting both quality and quantity of feed. Adaptation challenges include more frequent wet and dry conditions, increased pest and disease pressure, and overwintering problems, affecting quantity and quality of grass and cereals harvests. More frequent wet conditions are combined with larger farm size, higher axle loads of heavy machinery, increased risk of soil compaction, and high timeliness costs due to rapidly deteriorating feed quality if not harvested at the right time. Some solutions impose new investments and high costs. Results from bio-physical modeling show a clear need for new cultivars better suited in future climate. Various other solutions discussed with the farmers and extension specialists include improved maintenance of drainage and soil structure, to be promoted by crop rotation, soil improvements such as liming, as well as better crop protection. However, higher grass yields may be realized without considerably increased inter-annual yield variability. Needed long-term investments may thus lead to increased productivity under favorable market and policy conditions. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2150  
Permanent link to this record
 

 
Author Pohanková, E.; Hlavinka, P.; Kersebaum, K.C.; Dubrovský, M.; Fischer, M.; Balek, J.; Žalud, Z.; Hlavácová, M.; Trnka, M. url  openurl
  Title (up) Pilot study: Field crop rotations modeling under present and future conditions in the Czech Republic using HERMES model Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-75  
  Keywords  
  Abstract The aim of this study is to compare the water and organic material balance, yields and other aspects estimated within crop rotations by the Hermes crop model for present and future climatic conditions in the Czech Republic. Moreover, this is a pilot study for the complex and continuous crop rotations modeling (using both single crop models and ensembles) in connection with transient climate change scenarios. For this purpose, three locations representing important agricultural regions of the Czech Republic (with different climatic conditions) were selected. The crop rotation (including spring barley, silage maize, winter wheat, winter rape, and winter wheat in the listed order) was simulated from 1981-2080. The period 1981-2010 was covered by measured meteorological data, and the period 2011-2080 was represented by a transient synthetic weather series from the weather generator M&Rfi. The generated data was based on five circulation models representing an ensemble of 18 CMIP3 global circulation models to preserve to a large degree the uncertainty of the original ensemble. Two types of crop management were compared, and the influences of soil quality, increasing atmospheric CO2 and magnitude of adaptation measure (in the form of sowing date changes) were also considered. According to the results, if a “dry” scenario (such as GFCM21) would occur, then all the C3 crops produced in drier regions would be devastated in a significant number of seasons; for example, by the 2070s, up to 19.5%, 21.5% and 47.0% of seasons with winter rape, spring barley and winter wheat, respectively, would have a yield level below 50% of the present yield. Negative impacts are likely even on premium-quality soils regardless of the use of a flexible sowing date and accounting for increasing CO2 concentrations. Moreover, in some cases, the use of catch crops can have negative impacts, exacerbating the soil water deficit for the subsequent crops. This study (submitted to Climate Research journal) will be used as a pilot for subsequent activities. In this area, following calculations (the same set of stations and updated climate scenarios) using growth models ensemble (currently includes 12 modeling approaches) started to estimate uncertainty aspects. Consequently, the analysis within wider range of conditions (across continents) and farming methods will be conducted. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2190  
Permanent link to this record
 

 
Author McKersie, B. doi  openurl
  Title (up) Planning for food security in a changing climate Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3435-3450  
  Keywords Adaptation, Physiological; *Climate Change; Crops, Agricultural/growth & development; Droughts; *Food Supply; Zea mays/physiology; Climate change; DroughtGard; cropping systems; drought tolerance; genetic engineering; maize; marker-assisted selection; plant breeding  
  Abstract The Intergovernmental Panel on Climate Change and other international agencies have concluded that global crop production is at risk due to climate change, population growth, and changing food preferences. Society expects that the agricultural sciences will innovate solutions to these problems and provide food security for the foreseeable future. My thesis is that an integrated research plan merging agronomic and genetic approaches has the greatest probability of success. I present a template for a research plan based on the lessons we have learned from the Green Revolution and from the development of genetically engineered crops that may guide us to meet this expectation. The plan starts with a vision of how the crop management system could change, and I give a few examples of innovations that are very much in their infancy but have significant potential. The opportunities need to be conceptualized on a regional basis for each crop to provide a target for change. The plan gives an overview of how the tools of plant biotechnology can be used to create the genetic diversity needed to implement the envisioned changes in the crop management system, using the development of drought tolerance in maize (Zea mays L.) as an example that has led recently to the commercial release of new hybrids in the USA. The plan requires an interdisciplinary approach that integrates and coordinates research on plant biotechnology, genetics, physiology, breeding, agronomy, and cropping systems to be successful.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4568  
Permanent link to this record
 

 
Author Ingram, J.S.I.; Porter, J.R. doi  openurl
  Title (up) Plant science and the food security agenda Type Journal Article
  Year 2015 Publication Nature Plants Abbreviated Journal Nature Plants  
  Volume 1 Issue 11 Pages 15173  
  Keywords africa; maize  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2055-026x 2055-0278 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4705  
Permanent link to this record
 

 
Author Boeckx, T.; Winters, A.L.; Webb, K.J.; Kingston-Smith, A.H. doi  openurl
  Title (up) Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3571-3579  
  Keywords Catechol Oxidase/*metabolism; Cell Compartmentation; Chloroplasts/*enzymology; Environment; Photosynthesis; Plant Leaves/*enzymology; Abiotic stress; polyphenol oxidase; secondary metabolism.  
  Abstract Polyphenol oxidase (PPO) catalyses the oxidation of monophenols and/or o-diphenols to o-quinones with the concomitant reduction of oxygen to water which results in protein complexing and the formation of brown melanin pigments. The most frequently suggested role for PPO in plants has been in defence against herbivores and pathogens, based on the physical separation of the chloroplast-localized enzyme from the vacuole-localized substrates. The o-quinone-protein complexes, formed as a consequence of cell damage, may reduce the nutritional value of the tissue and thereby reduce predation but can also participate in the formation of structural barriers against invading pathogens. However, since a sufficient level of compartmentation-based regulation could be accomplished if PPO was targeted to the cytosol, the benefit derived by some plant species in having PPO present in the chloroplast lumen remains an intriguing question. So is there more to the chloroplastic location of PPO? An interaction between PPO activity and photosynthesis has been proposed on more than one occasion but, to date, evidence either for or against direct involvement has been equivocal, and the lack of identified chloroplastic substrates remains an issue. Similarly, PPO has been suggested to have both pro- and anti-oxidant functions. Nevertheless, several independent lines of evidence suggest that PPO responds to environmental conditions and could be involved in the response of plants to abiotic stress. This review highlights our current understanding of the in vivo functions of PPO and considers the potential opportunities it presents for exploitation to increase stress tolerance in food crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4552  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: