|   | 
Details
   web
Records
Author Challinor, A.; Martre, P.; Asseng, S.; Thornton, P.; Ewert, F.
Title (down) Making the most of climate impacts ensembles Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 2 Pages 77-80
Keywords uncertainty; model; adaptation
Abstract Increasing use of regionally and globally oriented impacts studies, coordinated across international modelling groups, promises to bring about a new era in climate impacts research. Coordinated cycles of model improvement and projection are needed to make the most of this potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Commentary
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4516
Permanent link to this record
 

 
Author Baldinger, L.; Vaillant, J.; Zollitsch, W.; Rinne, M.
Title (down) Making a decision-support system for dairy farmers usable throughout Europe: the challenge of feed evaluation Type Journal Article
Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 6 Issue 01 Pages 3-5
Keywords dairy; feed evaluation; organic; SOLID
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-4700 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4678
Permanent link to this record
 

 
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P.
Title (down) Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift Type Journal Article
Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 20 Issue 12 Pages 3686-3699
Keywords Agriculture/*methods; China; *Climate Change; Geography; *Models, Biological; *Temperature; Time Factors; Zea mays/*growth & development; adaptation; agriculture; climate change; crop; cultivar; impacts; phenology
Abstract Maize phenology observations at 112 national agro-meteorological experiment stations across China spanning the years 1981-2009 were used to investigate the spatiotemporal changes of maize phenology, as well as the relations to temperature change and cultivar shift. The greater scope of the dataset allows us to estimate the effects of temperature change and cultivar shift on maize phenology more precisely. We found that maize sowing date advanced significantly at 26.0% of stations mainly for spring maize in northwestern, southwestern and northeastern China, although delayed significantly at 8.0% of stations mainly in northeastern China and the North China Plain (NCP). Maize maturity date delayed significantly at 36.6% of stations mainly in the northeastern China and the NCP. As a result, duration of maize whole growing period (GPw) was prolonged significantly at 41.1% of stations, although mean temperature (Tmean) during GPw increased at 72.3% of stations, significantly at 19.6% of stations, and Tmean was negatively correlated with the duration of GPw at 92.9% of stations and significantly at 42.9% of stations. Once disentangling the effects of temperature change and cultivar shift with an approach based on accumulated thermal development unit, we found that increase in temperature advanced heading date and maturity date and reduced the duration of GPw at 81.3%, 82.1% and 83.9% of stations on average by 3.2, 6.0 and 3.5 days/decade, respectively. By contrast, cultivar shift delayed heading date and maturity date and prolonged the duration of GPw at 75.0%, 94.6% and 92.9% of stations on average by 1.5, 6.5 and 6.5 days/decade, respectively. Our results suggest that maize production is adapting to ongoing climate change by shift of sowing date and adoption of cultivars with longer growing period. The spatiotemporal changes of maize phenology presented here can further guide the development of adaptation options for maize production in near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4544
Permanent link to this record
 

 
Author Sinabell, F.; Kappert, R.; Kaul, H.-P.; Kratena, K.; Sommer, M.
Title (down) Maisanbau in Österreich. Ökonomische Bedeutung und pflanzenbauliche Herausforderungen Type Report
Year 2015 Publication Studie des Österreichischen Instituts für Wirtschaftsforschung im Auftrag des Ökosozialen Forums Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Österreichisches Institut für Wirtschaftsforschung Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5018
Permanent link to this record
 

 
Author Sandhu, H.; Wratten, S.D.; Porter, J.R.; Costanza, R.; Pretty, J.; Reganold, J.P.
Title (down) Mainstreaming ecosystem services into future farming solutions Type Journal Article
Year 2016 Publication The Solutions Journal Abbreviated Journal The Solutions Journal
Volume 7 Issue 2 Pages 40-47
Keywords
Abstract Agriculture has made remarkable advances in fulfilling the food and nutritional requirement of expanding human numbers worldwide. There are several sustainable farming systems that contribute to overall biodiversity conservation and associated ecosystem services. Yet agricultural practices that have come to predominate since the second half of the 20th century have led to the overuse of fossil fuel-based inputs, unsustainable exploitation of natural resources, and loss of biodiversity. These outcomes also have high costs to human health and the environment. Continuing with largely energy-intense, wasteful, polluting, and unsustainable agriculture is no longer a viable option for future world food security and human well-being. There is an urgent need for forms of agricultural production that improve natural capital and ecosystem services (ES) in food systems worldwide. Mainstreaming ES into future agriculture requires protocols to replace some of the nonrenewable resources (e.g. fossil fuel-based pesticides and fertilizers) with renewable resources (ES such as biological control of insect pests or nitrogen fixation by legumes). The protocols presented here have been tested in different agricultural systems that enable farmland to simultaneously provide food and a range of ecosystem services. Recent research demonstrates that managed systems with these protocols exhibit higher economic value of ecosystem services. Thus, there is need to support the deployment of these protocols through various policy mechanisms for the long-term sustainability of agriculture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4759
Permanent link to this record