|   | 
Details
   web
Records
Author Klein, D.; Luderer, G.; Kriegler, E.; Strefler, J.; Bauer, N.; Leimbach, M.; Popp, A.; Dietrich, J.P.; Humpenöder, F.; Lotze-Campen, H.; Edenhofer, O.
Title (up) The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 123 Issue 3-4 Pages 705-718
Keywords land-use change; bio-energy; greenhouse gases; carbon-dioxide; climate-change; constraints; emissions; economics; storage; costs
Abstract This study investigates the use of bioenergy for achieving stringent climate stabilization targets and it analyzes the economic drivers behind the choice of bioenergy technologies. We apply the integrated assessment framework REMIND-MAgPIE to show that bioenergy, particularly if combined with carbon capture and storage (CCS) is a crucial mitigation option with high deployment levels and high technology value. If CCS is available, bioenergy is exclusively used with CCS. We find that the ability of bioenergy to provide negative emissions gives rise to a strong nexus between biomass prices and carbon prices. Ambitious climate policy could result in bioenergy prices of 70 $/GJ (or even 430 $/GJ if bioenergy potential is limited to 100 EJ/year), which indicates a strong demand for bioenergy. For low stabilization scenarios with BECCS availability, we find that the carbon value of biomass tends to exceed its pure energy value. Therefore, the driving factor behind investments into bioenergy conversion capacities for electricity and hydrogen production are the revenues generated from negative emissions, rather than from energy production. However, in REMIND modern bioenergy is predominantly used to produce low-carbon fuels, since the transport sector has significantly fewer low-carbon alternatives to biofuels than the power sector. Since negative emissions increase the amount of permissible emissions from fossil fuels, given a climate target, bioenergy acts as a complement to fossils rather than a substitute. This makes the short-term and long-term deployment of fossil fuels dependent on the long-term availability of BECCS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4529
Permanent link to this record
 

 
Author Kipling, R.P.; Topp, C.F.E.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.J.; Lauwers, L.; Gulzari, S.O.; Reidsma, P.; Rolinski, S.; Ruiz-Ramos, M.; Sandars, D.L.; Sandor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Shrestha, S.; Weindl, I.; Eory, V.
Title (up) To what extent is climate change adaptation a novel challenge for agricultural modellers Type Journal Article
Year 2019 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 120 Issue Pages Unsp 104492
Keywords Adaptation; Agricultural modelling; Climate change; Research challenges; greenhouse-gas emissions; farm-level adaptation; land-use; food; security; adapting agriculture; livestock production; decision-making; change impacts; dairy farms; crop
Abstract Modelling is key to adapting agriculture to climate change (CC), facilitating evaluation of the impacts and efficacy of adaptation measures, and the design of optimal strategies. Although there are many challenges to modelling agricultural CC adaptation, it is unclear whether these are novel or, whether adaptation merely adds new motivations to old challenges. Here, qualitative analysis of modellers’ views revealed three categories of challenge: Content, Use, and Capacity. Triangulation of findings with reviews of agricultural modelling and Climate Change Risk Assessment was then used to highlight challenges specific to modelling adaptation. These were refined through literature review, focussing attention on how the progressive nature of CC affects the role and impact of modelling. Specific challenges identified were: Scope of adaptations modelled, Information on future adaptation, Collaboration to tackle novel challenges, Optimisation under progressive change with thresholds, and Responsibility given the sensitivity of future outcomes to initial choices under progressive change.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5223
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M.
Title (up) Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
Year 2016 Publication Euphytica Abbreviated Journal Euphytica
Volume 207 Issue 3 Pages 627-643
Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance
Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-2336 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4820
Permanent link to this record
 

 
Author D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedic, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M.
Title (up) Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review Type Journal Article
Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.
Volume 73 Issue 1 Pages 15-25
Keywords climate regulation; food, habitat services; land degradation prevention; moderation of extreme events; natural (landscape) heritage; primary production; regulation of water flows; water quality regulation; Grassland Management; Plant-Communities; Land Degradation; Inner-Mongolia; Trade-Offs; Biodiversity; Provision; Impact; Consequences; Conservation
Abstract The ecosystem services (ES) approach is a framework for describing the benefits of nature to human well-being, and this has become a popular instrument for assessment and evaluation of ecosystems and their functions. Grazing lands can provide a wide array of ES that depend on their management practices and intensity. This article reviews the trends and approaches used in the analysis of some relevant ES provided by grazing systems, in line with the framework principles of the Millennium Ecosystem Assessment (MA). The scientific literature provides reports of many studies on ES in general, but the search here focused on grazing systems, which returned only sixty-two papers. This review of published papers highlights that: (i) in some papers, the concept of ES as defined by the MA is misunderstood (e.g., lack of anthropocentric vision); (ii) 34% of the papers dealt only with one ES, which neglects the need for the multisectoral approach suggested by the MA; (iii) few papers included stakeholder involvement to improve local decision-making processes; (iv) cultural ES have been poorly studied despite being considered the most relevant for local and general stakeholders; and (v) stakeholder awareness of well-being as provided by ES in grazing systems can foster both agri-environmental schemes and the willingness to pay for these services.
Address 2018-03-02
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0142-5242 ISBN Medium Review
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5191
Permanent link to this record
 

 
Author Zhang, S.; Tao, F.; Zhang, Z.
Title (up) Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China Type Journal Article
Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 87 Issue Pages 30-39
Keywords Crop model, Extreme weather, Impacts, Rice development rate, Uncertainty; Climate-Change; Growth Duration; Crop Model; Ceres-Rice; Wheat; Temperature; Impact; Yield; Optimization; Performance
Abstract Rice models have been widely used in simulating and predicting rice phenology in contrasting climate zones, however the uncertainties from model structure (different equations or models) and/or model parameters were rarely investigated. Here, five rice phenological models/modules (Le., CERES-Rice, ORYZA2000, RCM, Beta Model and SIMRIW) were applied to simulate rice phenology at 23 experimental stations from 1992 to 2009 in two major rice cultivation regions of China: the northeastern China and the southwestern China. To investigate the uncertainties from model biophysical parameters, each model was run with randomly perturbed 50 sets of parameters. The results showed that the median of ensemble simulations were better than the simulation by most models. Models couldn’t simulate well in some specific years despite of parameters optimization, suggesting model structure limit model performance in some cases. The models adopting accumulative thermal time function (e.g., CERES-Rice and ORYZA2000) had better performance in the southwestern China, in contrast, those adopting exponential function (e.g., Beta model and RCM model) had better performance in the northeastern China. In northeastern China, the contribution of model structure and model parameters to model total variance was, respectively, about 55.90% and 44.10% in simulating heading date, and about 75.43% and 24.57% in simulating maturity date. In the southwestern China, the contribution of model structure and model parameters to model total variance was, respectively, about 79.97% and 27.03% in simulating heading date, about 92.15% and 7.85% in simulating maturity date. Uncertainty from model structure was the most relevant source. The results highlight that the temperature response functions of rice development rate under extreme climate conditions should be improved based on environment-controlled experimental data.
Address 2017-08-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5170
Permanent link to this record