toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. url  doi
openurl 
  Title (up) Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 62 Issue Pages 55-64  
  Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil  
  Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4562  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.L.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.G.; Nendel, C.; Kiese, R.; Eckersten, H.; Haas, E.; Vanuytrecht, E.; Wang, E.; Kuhnert, M.; Trombi, G.; Moriondo, M.; Bindi, M.; Lewan, E.; Bach, M.; Kersebaum, K.C.; Rotter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title (up) Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 141-157  
  Keywords crop model; model comparison; spatial resolution; data aggregation; spatial heterogeneity; scaling; climate-change scenarios; sub-saharan africa; winter-wheat; spatial-resolution; yield response; input data; systems simulation; large-scale; soil data; part i  
  Abstract We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Delta), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the., especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4754  
Permanent link to this record
 

 
Author Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. url  doi
openurl 
  Title (up) Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 188-198  
  Keywords Crop residue incorporation; Crop residue burning; Residual; autocorrelation; Mixed models; soil organic-matter; straw management; yield patterns; use efficiency; grain-yield; nitrogen; quality; systems; rotation; tillage  
  Abstract A long-term experiment comparing different crop residue (CR) managements was established in 1977 in Foggia (Apulia region, southern Italy). The objective of this study was to investigate the long-term effects of different types of crop residue management on main yield response parameters in a continuous cropping system of winter durum wheat. In order to correctly interpret the results, models accounting for spatial error autocorrelation were used and compared with ordinary least square models. Eight crop residue management treatments, based on burning of wheat straw and stubble or their incorporation with or without N fertilization and irrigation, were compared. The experimental design was a complete randomized block with five replicates. Results indicated that the dynamics of yield, grain protein content and hectolitric weight of winter durum wheat did not show any decline as usually expected when a monoculture is carried out for a long time. In addition, the temporal variability of productivity was more affected by meteorological factors, such as air temperature and rainfall, than CR management treatments. Higher wheat grain yields and hectolitric weights quite frequently occurred after burning of wheat straw compared with straw incorporation without nitrogen fertilization and autumn irrigation and this was attributed to temporary mineral N immobilization in the soil. The rate of 50 kg ha(-1) of N seemed to counterbalance this negative effect when good condition of soil moisture occurred in the autumn period, so yielding the same productive level of straw burning treatment. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4770  
Permanent link to this record
 

 
Author Leogrande, R.; Lopedota, O.; Montemurro, F.; Vitti, C.; Ventrella, D. url  doi
openurl 
  Title (up) Effects of irrigation regime and salinity on soil characteristics and yield of tomato Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 8  
  Keywords saline water; irrigation volume; Lycopersicon esculentum; soil solution  
  Abstract A field experiment was conducted in Mediterranean conditions to evaluate the effects of different irrigation volumes and water quality on yield performance of tomato crop. The tomato crop was irrigated reestablishing 50 (I1), 75 (I2) and 100% (I3) of the crop evapotranspiration (ETc) with two water quality: fresh water with EC 0.9 dS m-1 (FW) and saline water with EC 6 dSm-1 (SW). At harvest, total and marketable yield, weight, number, total soluble solids (TSS) and dry matter of fruit were calculated, The results showed no statistical differences among the three different irrigation volumes on tomato yield and quality. The salinity treatment did not affect yield, probably because the soil salinity in the root zone on average remained below the threshold of tomato salt tolerance. Instead, salinity improved fruit quality parameters as dry matter and TSS by 13 and 8%, respectively. After the first field application of saline water, soil saturated extract cations (SSEC), electrical conductivity of soil paste extract (ECe), sodium absorption ratio (SAR) and exchangeable sodium percentage (ESP) cations increased; the largest increase of cations, in particular of Na, occurred in the top layer. At the end of the experiment, the absolute value of SSEC, ECe and SAR, for all the effects studied, were lower than those recorded in 2007. This behavior was suitable to the reduced volumes of treatments administered in 2009 in respect to the 2007. Furthermore, the higher total rainfall recorded in 2009 increased the leaching and downward movement of salts out of the sampling depth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2039-6805 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4476  
Permanent link to this record
 

 
Author Siczek, A.; Horn, R.; Lipiec, J.; Usowicz, B.; Łukowski, M. url  doi
openurl 
  Title (up) Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions Type Journal Article
  Year 2015 Publication Soil and Tillage Research Abbreviated Journal Soil and Tillage Research  
  Volume 153 Issue Pages 175-184  
  Keywords straw mulch; soil temperature; soil matric potential; soil penetration resistance; soybean biomass; seed and protein yield; water productivity; bulk-density; management-practices; crop production; n-2 fixation; compaction; growth; nitrogen; yield; straw; temperature  
  Abstract A field experiment was conducted on Haplic Luvisol developed from loess to assess the effects of soil deformation and straw mulch on soil water status (matric potential), temperature, penetration resistance, soybean growth, seed yield and yield components including straw, protein and oil in 2006-2008. Water use efficiencies related to the amount of rainfall during the growing seasons were calculated for seeds and total above ground biomass. The soil deformation levels (main plots) comprised the following trials: non-compacted (NC, 0 tractor pass), moderately compacted (MC, 3 passes), and strongly compacted (SC, 5 passes). A uniform seedbed in all plots was prepared by harrowing before planting. The main plots included sub-plots without and with surface wheat straw mulch (0.5 kg m(-2)) and the corresponding trials were NC + M, MC + M, SC + M. The amount and distribution of rainfall during the growing season differed among the experimental years with extended drought at bloom-full seed (R2-R6) stages in 2006, good water supply in 2007, and alternative periods with relatively high and low rainfalls in 2008. The effect of soil deformation on matric potential was influenced by weather conditions, soybean growth phase, mulching and depth. The differences were greatest in 2007 and 2008 at R7-R8 growth stages. With increasing deformation level from NC to SC matric potential for 0-15 cm depth during these stages significantly decreased from -401 to -1184 kPa in 2007 and from -1154 to -1432 kPa in 2008. On mulched soil, the corresponding ranges were from -541 to -841 klpa and from -748 to -1386 kPa, respectively. In the dry summer 2006, the differences were smaller and less consistent. Irrespective of soil deformation level, mulching reduced soil temperature in most growth phases but most pronounced initially. Most yield components increased from NC to MC during the experiments which could be attributed to enhanced root water and nutrient uptake rates and decreased from MC to SC due to high soil strength that restrained root growth down to deeper depth. The yields of seeds, straw, protein and oil as well as water productivity of soybean seed and biomass were improved by mulching in 2007-2008. This improvement was more pronounced in 2007 when the mean yield of seeds, protein and oil were significantly greater by 16, 29 and 11%, respectively and was attributed to positive alterations in soil water retention. These results indicate the possibilities of improvement in soybean performance by identifying allowable amount of traffic and mulching practices at planting depending on weather fluctuations during the growing season. Since rainfall and air temperature distribution in 2007 are close to those averaged over a long period of time, the use of straw mulch may positively affect soybean performance and yields excluding anomalously dry years. The positive effect of straw mulch can be enhanced by moderate soil deformation combined with seedbed loosening before planting to avoid constraining effect of soil structure on crop establishment. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-1987 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: