toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fulu, T. url  openurl
  Title (up) Case 5: Design future climate-resilient barley cultivars using crop model ensembles Type Conference Article
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Presentation SC 2.10 Farming systems. Case 5: Design future climate-resilient barley cultivars using crop model ensembles, Tao Fulu, Natural Resources Institute Finland (LUKE), Finland (2016). Presented at the international conference Adaptation Futures 2016, Rotterdam, the Netherlands. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Rotterdam (Netherlands) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AdaptationFutures 2016, 10-13 May 2016, Rotterdam  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2445  
Permanent link to this record
 

 
Author Wang, E.; et, A. openurl 
  Title (up) Causes for uncertainty in simulating wheat response to temperature Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2894  
Permanent link to this record
 

 
Author Olesen, J.E.; Porter, J.R.; Christensen, J.H. url  openurl
  Title (up) Centre for Regional change in the Earth System Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Centre for Regionalchange in the Earth System (CRES, cres-centre.net) is funded by the DanishStrategic Research Council for the period 2009-2014 and is coordinated by theDanish Meteorological Institute. CRES has established a coordinated researcheffort aiming to improve societal preparedness for climate change, inparticular for Denmark. The overall objective of CRES is to extend knowledge ofand reduce the uncertainties surrounding regional climate change and itsimpacts and thereby support future climate change adaptation and mitigationpolicies. Some of the objectives that also have large synergies with theeffects in the CropM theme of MACSUR are a) to reduce uncertainty surroundingregional climate change and its impacts for the period 2020-2050 by improvingmodel formulation and process understanding; b) identify key changes andtipping points in the regional hydrological system, agriculture, freshwater andestuarine ecosystems caused by changes in seasonality, dynamics and extremeevents of precipitation, droughts, heat waves and sea level rise; c) quantifyconfidence and uncertainties in predictions of future regional climate and itsimpacts, by improving the statistical methodology and substance and byintegrating interdisciplinary risk analyses; d) interpret these results inrelation to risk management approaches for climate change adaptation andmitigation. Studies in CRES of particular interest to MACSUR include a)Estimation on generic crop model uncertainties in projection of climate changeimpacts on wheat year, b) Assessment of uncertainties in projected effects onwater balance, crop productivity and nitrate leaching of changes in land use,climate and assessment models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5059  
Permanent link to this record
 

 
Author Schils, R.; Olesen, J.E.; Kersebaum, K.-C.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; Manolov, I.; Trnka, M.; Hlavinka, P.; Palosuo, T.; Peltonen-Sainio, P.; Jauhiainen, L.; Lorgeou, J.; Marrou, H.; Danalatos, N.; Archontoulis, S.; Fodor, N.; Spink, J.; Roggero, P.P.; Bassu, S.; Pulina, A.; Seehusen, T.; Uhlen, A.K.; Zylowska, K.; Nierobca, A.; Kozyra, J.; Silva, J.V.; Macas, B.M.; Coutinho, J.; Ion, V.; Takac, J.; Ines Minguez, M.; Eckersten, H.; Levy, L.; Herrera, J.M.; Hiltbrunner, J.; Kryvobok, O.; Kryvoshein, O.; Sylvester-Bradley, R.; Kindred, D.; Topp, C.F.E.; Boogaard, H.; de Groot, H.; Lesschen, J.P.; van Bussel, L.; Wolf, J.; Zijlstra, M.; van Loon, M.P.; van Ittersum, M.K. doi  openurl
  Title (up) Cereal yield gaps across Europe Type Journal Article
  Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 101 Issue Pages 109-120  
  Keywords Wheat, Barley, Grain maize, Crop modelling, Yield potential, Nitrogen; Nitrogen Use Efficiency; Sustainable Intensification; Climate-Change; Land-Use; Wheat; Soil; Agriculture; Impacts; Fertility; Emissions  
  Abstract Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha(-1) for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.  
  Address 2019-01-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5213  
Permanent link to this record
 

 
Author Özkan, Ş.; Vitali, A.; Lacetera, N.; Amon, B.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; de Haas, Y.; Dufrasne, I.; Elliott, J.; Eory, V.; Fox, N.J.; Garnsworthy, P.C.; Gengler, N.; Hammami, H.; Kyriazakis, I.; Leclère, D.; Lessire, F.; Macleod, M.; Robinson, T.P.; Ruete, A.; Sandars, D.L.; Shrestha, S.; Stott, A.W.; Twardy, S.; Vanrobays, M.L.; Ahmadi, B.V.; Weindl, I.; Wheelhouse, N.; Williams, A.G.; Williams, H.W.; Wilson, A.J.; Østergaard, S.; Kipling, R.P. doi  openurl
  Title (up) Challenges and priorities for modelling livestock health and pathogens in the context of climate change Type Journal Article
  Year 2016 Publication Environmental Research Abbreviated Journal Environ. Res.  
  Volume 151 Issue Pages 130-144  
  Keywords  
  Abstract Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4766  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: