|   | 
Details
   web
Records
Author Dumont, B.; Leemans, V.; Ferrandis Vallterra, S.; Vancutsem, F.; Seutin, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title (up) Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Conference Article
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 11th International Conference on Precision Agriculture. Indianapolis (USA)., 2012-07-15 to 2012-07-18
Notes Approved no
Call Number MA @ admin @ Serial 2404
Permanent link to this record
 

 
Author Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title (up) Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 15 Issue 3 Pages 255-272
Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe
Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 1573-1618 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4621
Permanent link to this record
 

 
Author Höglind, M.; Thorsen, S.M.; Semenov, M.A.
Title (up) Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models Type Journal Article
Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 170 Issue Pages 103-113
Keywords climatic variability; frost damage; grass modelling; ice damage; multi-model ensemble; elevated co2 concentration; phleum-pratense l; timothy regrowth; change scenarios; winter survival; meadow fescue; crop yields; growth; frost; temperature
Abstract Forage-based dairy and livestock production is the backbone of agriculture in Northern Europe in economic terms. Changes in growing conditions that affect forage grass yield may have great economic consequences. This study assessed the impact of climate change on two grass species, timothy and ryegrass, at 14 locations in Northern Europe (Iceland, Scandinavia, Baltic countries) in a near-future scenario (2040-2065) compared with the baseline period 1960-1990. Local-scale climate scenarios were based on the CMIP3 multi-model ensembles of 15 global climate models in order to quantify the uncertainty in the impacts relating to highly uncertain projections of future climate. Potential yield of timothy, the most important perennial forage grass in Northern Europe, was simulated under the assumption of optimal overwintering conditions and current CO2 level, in order to obtain an estimate of the effect of changes in summer climate per se. The risk of frost and ice damage during winter was also assessed. The simulation results demonstrated that potential grass yield will increase throughout the study area, mainly as a result of increased growing temperatures. The yield response to climate change was slightly larger in irrigated than non-irrigated conditions (14% and 11%, respectively), due to larger water deficit for the 2050 scenario. However, a geo-climatic gradient was evident, with the largest predicted yield response at western locations. A geo-climatic gradient was also revealed with respect to potential frost damage, which was predicted to increase during winter in some areas east of the Baltic Sea for timothy, and for a larger number of locations both east and west of the Baltic Sea for perennial ryegrass. The risk of frost damage in spring was predicted to increase mainly in western parts of the study area. If frost damage to perennial ryegrass increases during winter, the expected increase in winter temperature due to global warming may not necessarily improve overwintering conditions, so the growing zone may not necessarily expand to the north and east of the study area by 2050. The uncertainty in impacts was frequently, but not consistently, greater in western than eastern locations. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4492
Permanent link to this record
 

 
Author Kersebaum, K.; Kroes, J.; Gobin, A.; Takáč, J.; Hlavinka, P.; Trnka, M.; Ventrella, D.; Giglio, L.; Ferrise, R.; Moriondo, M.; Dalla Marta, A.; Luo, Q.; Eitzinger, J.; Mirschel, W.; Weigel, H.-J.; Manderscheid, R.; Hoffmann, M.; Nejedlik, P.; Iqbal, M.; Hösch, J.
Title (up) Assessing uncertainties of water footprints using an ensemble of crop growth models on winter wheat Type Journal Article
Year 2016 Publication Water Abbreviated Journal Water
Volume 8 Issue 12 Pages 571
Keywords
Abstract Crop productivity and water consumption form the basis to calculate the water footprint (WF) of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment) experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4987
Permanent link to this record
 

 
Author Daccache, A.
Title (up) Assessing water and energy footprint of irrigated agriculture in the Mediterranean Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Agriculture in the Mediterranean, one of the water scarcest regions in the world is by far the largest water consuming sector. Dwindling water supply, increase in drought frequency and uncertainties associated with climate change have raised the alerts on the region’s food security and environmental sustainability. In this study, a large geo-database of global climate, soil and crop were combined with national irrigation statistics to run a water balance model to estimate the theoretical irrigation volumetric needs of the Mediterranean main strategic crops and their relative CO2 emissions. When associated with the reported crop yield and water resources availability, the spatial variability of water (m3/kg) and energy (CO2/kg) productivity across the Mediterranean region are obtained and vulnerable areas are identified. The estimated total water needs for the Mediterranean irrigated agriculture under current climate, land cover and irrigation methods was estimated to be around 46km3/year releasing more than 3Mt of CO2 in the atmosphere only from water abstraction and farm application. Currently, 59% of total irrigation water needs are located in catchments that are classified as under high and extremely high water risk. With climate change, water resources are expected to become scarcer and agriculture more dependent on irrigation to satisfy the continuous increase in food demand. Adaptation and mitigation options to tackle water scarcity and improve productivity under current and future climate will be discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5056
Permanent link to this record