toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caubel, J.; García de Cortázar-Atauri, I.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I. url  doi
openurl 
  Title (up) Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 207 Issue Pages 94-106  
  Keywords Climate suitability; Indicator-based method of evaluation; Ecoclimatic; indicator; Crop phenology; Crop ecophysiology; Crop management; Yield; quality; high-temperature; heat-stress; change scenarios; maize; wheat; growth; yield; agriculture; systems; time  
  Abstract The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4553  
Permanent link to this record
 

 
Author Angulo, C.; Rötter, R.; Trnka, M.; Pirttioja, N.; Gaiser, T.; Hlavinka, P.; Ewert, F. url  doi
openurl 
  Title (up) Characteristic ‘fingerprints’ of crop model responses to weather input data at different spatial resolutions Type Journal Article
  Year 2013 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 49 Issue Pages 104-114  
  Keywords crop model; weather data resolution; aggregation; yield distribution; climate-change scenarios; areal unit problem; simulation-model; winter-wheat; system model; impacts; europe; yield; productivity; precipitation  
  Abstract Crop growth simulation models are increasingly used for regionally assessing the effects of climate change and variability on crop yields. These models require spatially and temporally detailed, location-specific, environmental (weather and soil) and management data as inputs, which are often difficult to obtain consistently for larger regions. Aggregating the resolution of input data for crop model applications may increase the uncertainty of simulations to an extent that is not well understood. The present study aims to systematically analyse the effect of changes in the spatial resolution of weather input data on yields simulated by four crop models (LINTUL-SLIM, DSSAT-CSM, EPIC and WOFOST) which were utilized to test possible interactions between weather input data resolution and specific modelling approaches representing different degrees of complexity. The models were applied to simulate grain yield of spring barley in Finland for 12 years between 1994 and 2005 considering five spatial resolutions of daily weather data: weather station (point) and grid-based interpolated data at resolutions of 10 km x 10 km; 20 km x 20 km; 50 km x 50 km and 100 km x 100 km. Our results show that the differences between models were larger than the effect of the chosen spatial resolution of weather data for the considered years and region. When displaying model results graphically, each model exhibits a characteristic ‘fingerprint’ of simulated yield frequency distributions. These characteristic distributions in response to the inter-annual weather variability were independent of the spatial resolution of weather input data. Using one model (LINTUL-SLIM), we analysed how the aggregation strategy, i.e. aggregating model input versus model output data, influences the simulated yield frequency distribution. Results show that aggregating weather data has a smaller effect on the yield distribution than aggregating simulated yields which causes a deformation of the model fingerprint. We conclude that changes in the spatial resolution of weather input data introduce less uncertainty to the simulations than the use of different crop models but that more evaluation is required for other regions with a higher spatial heterogeneity in weather conditions, and for other input data related to soil and crop management to substantiate our findings. Our results provide further evidence to support other studies stressing the importance of using not just one, but different crop models in climate assessment studies. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4598  
Permanent link to this record
 

 
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. doi  openurl
  Title (up) Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 81-92  
  Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254  
  Abstract Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.  
  Address 2017-11-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5178  
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Wolf, J.; Britz, W.; Vries, W. de; Gaiser, T.; Hoffmann, H.; Ewert, F. url  doi
openurl 
  Title (up) Climate change impacts on European crop yields: Do we need to consider nitrogen limitation Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 123-134  
  Keywords Climate impact assessment; Nitrogen limitation; European crop yields; SIMPLACE Crop modelling framework; model calibration; winter-wheat; scale; co2; productivity; agriculture; strategies; scenarios; systems; growth  
  Abstract Global climate impact studies with crop models suggest that including nitrogen and water limitation causes greater negative climate change impacts on actual yields compared to water-limitation only. We simulated water limited and nitrogen water limited yields across the EU-27 to 2050 for six key crops with the SIMPLACE<LINTUL5, DRUNIR, HEAT> model to assess how important consideration of nitrogen limitation is in climate impact studies for European cropping systems. We further investigated how crop nitrogen use may change under future climate change scenarios. Our results suggest that inclusion of nitrogen limitation hardly changed crop yield response to climate for the spring-sown crops considered (grain maize, potato, and sugar beet). However, for winter-sown crops (winter barley, winter rapeseed and winter wheat), simulated impacts to 2050 were more negative when nitrogen limitation was considered, especially with high levels of water stress. Future nitrogen use rates are likely to decrease due to climate change for spring-sown crops, largely in parallel with their yields. These results imply that climate change impact studies for winter-sown crops should consider N-fertilization. Specification of future N fertilization rates is a methodological challenge that is likely to need integrated assessment models to address.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4726  
Permanent link to this record
 

 
Author Wolf, J.; Kanellopoulos, A.; Kros, J.; Webber, H.; Zhao, G.; Britz, W.; Reinds, G.J.; Ewert, F.; de Vries, W. url  doi
openurl 
  Title (up) Combined analysis of climate, technological and price changes on future arable farming systems in Europe Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 140 Issue Pages 56-73  
  Keywords agriculture; capri; climate change; environmental impact; farming system; fssim; integrated assessment; integrator; model linkage; n emission; price change; scenarios; simplace; technological change; crop simulation-models; agricultural land-use; integrated assessment; growth; strategies; nitrogen; soils; environment; scenarios; emissions  
  Abstract In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable crops; the CAPRI model to estimate impacts on global agricultural markets, specifically product prices; the bio-economic farm model FSSIM to calculate the future changes in cropping patterns and farm net income at the farm and regional level; and the environmental model INTEGRATOR to calculate nitrogen (N) uptake and losses to air and water. First, the four linked models were applied to analyse the effect of climate change only or a most likely baseline (i.e. B1) scenario for 2050 as well as for two alternative scenarios with, respectively, strong (i.e. A1-b1) and weak economic growth (B2) for five regions/countries across Europe (i.e. Denmark, Flevoland, Midi Pyrenees, Zachodniopomorsld and Andalucia). These analyses Were repeated but assuming in addition to climate change impacts, also the effects of changes in technology and management on crop yields, the effects of changes in prices and policies in 2050, and the effects of all factors together. The outcomes show that the effects of climate change to 2050 result in higher farm net incomes in the Northern and Northern-Central EU regions, in practically unchanged farm net incomes in the Central and Central-Southern EU regions, and in much lower farm net incomes in Southern EU regions compared to those in the base year. Climate change in combination with improved technology and farm management and/or with price changes towards 2050 results in a higher to much higher farm net incomes. Increases in farm net income for the B1 and A1-b1 scenarios are moderately stronger than those for the B2 scenario, due to the smaller increases in product prices and/or yields for the B2 scenario. Farm labour demand slightly to moderately increases towards 2050 as related to changes in cropping patterns. Changes in N2O emissions and N leaching compared to the base year are mainly caused by changes in total N inputs from the applied fertilizers and animal manure, which in turn are influenced by changes in crop yields and cropping patterns, whereas NH3 emissions are mainly determined by assumed improvements in manure application techniques. N emissions and N leaching strongly increase in Denmark and Zachodniopomorski, slightly decrease to moderately increase in Flevoland and Midi-Pyrenees, and strongly decrease in Andalucia, except for NH3 emissions which zero to moderately decrease in Flevoland and Denmark. (C) 2015 Elsevier Ltd. All tights reserved.  
  Address 2015-10-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4703  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: