|   | 
Details
   web
Records
Author Köchy, M.; Aberton, M.; Bannink, A.; Banse, M.; Brouwer, F.; Brüser, K.; Ewert, F.; Foyer, C.; Jorgenson, J.S.; Kipling, R.; Meijs, J.; Rötter, R.; Scollan, N.; Sinabell, F.; Tiffin, R.; van den Pol-van Dasselaar, A.
Title (up) MACSUR — Summary of research results, phase 1: 2012-2015 Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-H3.3
Keywords Hub
Abstract MACSUR — Modelling European Agriculture with Climate Change for Food Security — is a  knowledge hub that was formally created in June 2012 as a European scientific network.  The strategic aim of the knowledge hub is to create a coordinated and globally visible  network of European researchers and research groups, with intra- and interdisciplinary  interaction and shared expertise creating synergies for the development of scientific  resources (data, models, methods) to model the impacts of climate change on agriculture  and related issues. This objective encompasses a wide range of political and sociological  aspects, as well as the technical development of modelling capacity through impact  assessments at different scales and assessing uncertainties in model outcomes. We achieve  this through model intercomparisons and model improvements, harmonization and  exchange of data sets, training in the selection and use of models, assessment of benefits  of ensemble modelling, and cross-disciplinary linkages of models and tools. The project  engages with a diverse range of stakeholder groups and to support the development of  resources for capacity building of individuals and countries. Commensurate with this broad  challenge, a network of currently 300 scientists (measured by the number of individuals on  the central e-mail list) from 18 countries evolved from the original set of research groups  selected by FACCE.   In the spirit of creating and maintaining a network for intra- and interdisciplinary  knowledge exchange, network activities focused on meetings of researchers for sharing  expertise and, depending on group resources (both financial and personnel), development  of collaborative research activities. The outcome of these activities is the enhanced  knowledge of the individual researchers within the network, contributions to conference  presentations and scholarly papers, input to stakeholders and the general public, organised  courses for students, junior and senior scientists. The most visible outcome are the  scientific results of the network activities, represented in the contributions of MACSUR  members to the impressive number of more than 200 collaborative papers in peer-reviewed  publications.   Here, we present a selection of overview and cross-disciplinary papers which include  contributions from MACSUR members. It highlights the major scientific challenges  addressed, and the methodological solutions and insights obtained. Over and above these  highlights, major achievements have been reached regarding data collection, data  processing, evaluation, model testing, modelling assessments of the effects of agriculture  on ecosystem services, policy, and development of scenarios. Details on these  achievements in the context of MACSUR can be found in our online publication FACCE  MACSUR Reports at http://ojs.macsur.eu.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2086
Permanent link to this record
 

 
Author Roggero, P.P.
Title (up) Managing Agricultural Greenhouse Gases Network (MAGGnet): Exploring Greenhouse Gas Mitigation Potential of Cropland Management Practices Type Report
Year 2016 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 9 C6 - Issue Pages Sp9-8
Keywords
Abstract Global Research Alliance on Agricultural Greenhouse Gases Established: December 2009, United Nations Climate Change Conference, Copenhagen, Denmark•Purpose: Facilitate research, development and extension of technologies and practices that will help deliver ways to grow more food (and more climate-resilient food systems) without growing greenhouse gas emissions.•Current Membership: 46 countries (Europe, Americas, Asia Pacific, Africa)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 4840
Permanent link to this record
 

 
Author Köchy, M.
Title (up) Maps of grasslands in Europe Type Report
Year 2013 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 1 Issue Pages D-L1.3.1
Keywords
Abstract Modelling of climate effects on agriculture and food security at the European scale requires a harmonized spatially, explicit database of European land use. It can be used for scaling results of point models to an area. A recent review of land cover maps focused on the global scale (Köchy, 2010). European land use as a subset of global land use is contained in the product GlobCover representing the year 2009 with a resolution of 0.3 km. A European product is the CORINE data set with a resolution of 100 m and a minimum mapping unit of 25 ha representing the year 2006 (version 16, European Environmental Agency, 2012). For scaling the results obtained for individual points to larger regions one needs fine-grained maps using the same categories as represented by the sample points. The CORINE map of pasture cover (Fig. 1) has the advantage of being very fine-grained and the classification being supervised. The visual differences to coarser maps of cover matched to census (Fig. 4), however, indicate, that none of the existing maps is reflecting reality perfectly. Since MACSUR will likely work with official national statistics it may be preferable to use one of the census-calibrated maps. For a better match, official EU spatial reporting schemes may be used at a grain that ensures data privacy of the land owners. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2257
Permanent link to this record
 

 
Author Knox, J.
Title (up) Meta-analysis of recent scientific evidence on climate impacts and uncertainty on crop yields in Europe Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-30
Keywords
Abstract Projected changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security (Daccache et al., 2014). We assessed the projected impacts of climate change on the yield of seven crops (viz wheat, barley, maize, potato, sugar beet, rice and rye) in Europe using a systematic review (SR) and meta-analysis of data reported in 67 original publications from an initial screening of 1424 studies. Whilst similar studies exist for Africa and South Asia (Roudier et al., 2011; Knox et al., 2012), surprisingly, no such comparable synthesis has been undertaken for Europe. Our study focussed on the biophysical impacts of climate change on productivity (i.e. yield per unit area) and did not consider ‘food production’ as this is dependent on many ‘non-biophysical’ factors, such as international trade policy and world markets. The data relate to the projected mean yield variations for each crop type, for all crop models, all GCM models and all time slices.For Europe, most studies projected a positive impact on yield; the reported increases largely being due to rising atmospheric CO2 concentrations enhancing both productivity and resource use efficiencies. Overall, a mean yield increase of +14% was identified, but with large differences between individual crops (e.g. wheat +22%; potato +12%) and regions (e.g. northern Europe +17%; southern Europe +7%). It is important to note that projected yield data were not available for all crops in all regions, so lack of a significant response may in part be due to the absence, or limited number of studies for certain crops and/or regions. Furthermore, the results include all reported yield projections, for all time slices, for all GCM combinations (whether single or ensemble) and for all crop modelling approaches (whether based on simple statistical trends or more complex biophysical modelling approaches). This highlights the magnitude of variability that exists when all possible sources of uncertainty are included. Further statistical analyses were conducted to disaggregate the data by time slice, climate and crop model to identify which factors were likely to contribute most to yield variations and uncertainty.The SR showed that evidence of climate change impacts on crop yield in Europe is extensive for wheat, maize, sugar beet and potato but very limited for barley, rice and rye. Interpreting the reported yield observations was compounded by ‘effect modifiers’ or reasons for heterogeneity. These included different emission scenarios and climate ensembles, implicit assumptions regarding crop varieties, the agricultural systems studied, and assumed levels of mechanization and crop husbandry. Despite its limitations, the SR helps identify where further research should be targeted and regions where adaptation will be most needed. It confirms that climate change is likely to increase productivity of Europe’s major agricultural cropping systems, with more favourable impacts in northern and central Europe. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2145
Permanent link to this record
 

 
Author Van Oijen, M.
Title (up) Methods for risk analysis and spatial upscaling of process-based models: Experiences from projects Carbo-Extreme and GREENHOUSE Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-69
Keywords
Abstract In the recently finished EU-funded project Carbo-Extreme, we developed a simple probabilistic method for quantifying vulnerabilities and risks to ecosystems (http://iopscience.iop.org/1748-9326/8/1/015032). The method defines risk as expected loss due to environmental hazards, and shows how such risk can be calculated as the product of ecosystem vulnerability and hazard probability. The method was used with six different vegetation models to estimate current and future drought risks for crops, grasslands and forests across Europe (http://www.biogeosciences.net/11/6357/2014/bg-11-6357-2014.html).In the still ongoing UK-funded project GREENHOUSE, the focus is on spatial upscaling of local measurements and model predictions of greenhouse gas emissions to wider regions. As part of this work, we are comparing different model upscaling methods – ranging from naive input aggregation to geostatistics – and quantify the uncertainties associated with the upscaling. This work builds on an earlier inventory of model upscaling methods that was produced in a collaboration of CEH-Edinburgh and the University of Bonn (https://www.stat.aau.at/Tagungen/statgis/2009/StatGIS2009Van%20Oijen1.pdf). Here we show a comparison of the methods using model predictions for the border region of England and Scotland. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2184
Permanent link to this record