|   | 
Details
   web
Records
Author Yin, X.G.; Olesen, J.E.; Wang, M.; Öztürk, I.; Chen, F.
Title (up) Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010 Type Journal Article
Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 154 Issue 07 Pages 1190-1208
Keywords
Abstract Crop production in the Northeast Farming Region of China (NFR) is affected considerably by variation in climatic conditions. Data on crop yield and weather conditions from a number of agro-meteorological stations in NFR were used in a mixed linear model to evaluate the impacts of climatic variables on the yield of maize (Zea mays L.), rice (Oryza sativa L.), soybean (Glycine max L. Merr.) and spring wheat (Triticum aestivum L.) in different crop growth phases. The crop growing season was divided into three growth phases based on the average crop phenological dates from records covering 1981 and 2010 at each station, comprising pre-flowering (from sowing to just prior to flowering), flowering (20 days around flowering) and post-flowering (10 days after flowering to maturity). The climatic variables were mean minimum temperature, thermal time (which is used to indicate changes in the length of growth cycles), average daily solar radiation, accumulated precipitation, aridity index (which is used to assess drought stress) and heat degree-days index (HDD) (which is used to indicate heat stress) were calculated for each growth phase and year. Over the 1961–2010 period, the minimum temperature increased significantly in each crop growth phase, the thermal time increased significantly in the pre-flowering phase of each crop and in the post-flowering phases of maize, rice and soybean, and HDD increased significantly in the pre-flowering phase of soybean and wheat. Average solar radiation decreased significantly in the pre-flowering phase of all four crops and in the flowering phase of soybean and wheat. Precipitation increased during the pre-flowering phase leading to less aridity, whereas reduced precipitation in the flowering and post-flowering phases enhanced aridity. Statistical analyses indicated that higher minimum temperature was beneficial for maize, rice and soybean yields, whereas increased temperature reduced wheat yield. Higher solar radiation in the pre-flowering phase was beneficial for maize yield, in the post-flowering phase for wheat yield, whereas higher solar radiation in the flowering phase reduced rice yield. Increased aridity in the pre-flowering and flowering phases severely reduced maize yield, higher aridity in the flowering and post-flowering phases reduced rice yield, and aridity in all growth phases reduced soybean and wheat yields. Higher HDD in all growth phases reduced maize and soybean yield and HDD in the pre-flowering phase reduced rice yield. Such effects suggest that projected future climate change may have marked effects on crop yield through effects of several climatic variables, calling for adaptation measures such as breeding and changes in crop, soil and agricultural water management.
Address 2016-09-30
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4782
Permanent link to this record
 

 
Author Köchy, M.
Title (up) Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A workshop for decisionmakers. Workshop Programme Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages Sp6-0
Keywords
Abstract Local agricultural production is strongly affected by the weather. Climate change is likely to cause increases in extreme weather events, as well as underlying changes in average conditions. If agriculture is to be sustainable and profitable, farmers will need to adapt to these changes. What impacts could climate change have on farming systems across Europe, and how important are they likely to be compared to the impacts of policies?In order to better answer these questions, the FACCE JPI knowledge hub MACSUR, compris­ing more than 300 researchers in 18 countries, is assessing the current state of the art in the modelling of agri­cultural systems for food security.At this workshop we invited policymakers and other stakeholders to learn about regional impacts of climate change on European agriculture relative to policies and to inform researchers about the consultation needs of stakeholders. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2081
Permanent link to this record
 

 
Author Zylowska, K.; Nieróbca, A.; Kozyra, J.; Syp, A.
Title (up) Climatic condition for yielding of maize in Poland in the period 1971-2010 Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12
Notes Approved no
Call Number MA @ admin @ Serial 2932
Permanent link to this record
 

 
Author Krzyszczak, J.R.; Baranowski, P.; Sławiński, C.
Title (up) CO2 flux measurements in the vegetation period of winter wheat in Lubelskie province Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The assessment of net ecosystem exchange and respiration of ecosystem of terrestrial ecosystems is necessary to improve our knowledge about carbon cycle in nature. Here we present measurements of CO2 fluxes for a winter wheat temperate climate ecosystem (buckwheat in the previous years) located in the Lubelskie province (eastern Poland) using a closed dynamic chamber system over a 2013 vegetation season. Measurements of carbon dioxide emission from soils and its assimilation by plants were carried out on a typical for Lubelskie highland arable land located in the Stany Nowe (N50o49’17.0555”, E22o16’28.51”, height 243m above sea level) using the set of two chambers (transparent and dark). Carbon dioxide fluxes have been measured by EGM-4 PP Systems sensor during fixed stages of the plant growing season. During the experiment carbon emission from soil ranged from 151 to 764 mg C·m-2·h-1 and its assimilation by plants ranged from -148 (emission) to 1585 mg C·m-2·h-1. We found substantial differences in emission and assimilation of carbon in the winter wheat ecosystem. This, along with other measurements (meteorological factors and soil and plant parameters) carried out in the Stany Nowe can be used as a high quality data to verify various models of  emission of greenhouse gases. The chamber technique occurs to be  a useful tool for determining carbon dioxide exchange between ecosystem surface and the atmosphere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5064
Permanent link to this record
 

 
Author Mirschel, W.; Barkusky, D.; Hufnagel, J.; Kersebaum, K.C.; Nendel, C.; Laacke, L.; Luzi, K.; Rosner, G.
Title (up) Coherent multi-variable field data set of an intensive cropping system for agro-ecosystem modelling from Müncheberg, Germany Type Journal Article
Year 2016 Publication Open Data Journal for Agricultural Research Abbreviated Journal Open Data J. Agric. Res.
Volume 2 Issue 1 Pages 1-10
Keywords
Abstract A six-year (1993-1998) multivariable data set for a four-plot intensive crop rotation (sugar beet – winter wheat – winter barley – winter rye – catch crop) located at Leibniz Centre for Agricultural Landscape Research (ZALF) Experimental Station, Müncheberg, Germany, is documented in detail. The experiment targets crop response to water supply on sandy soils (Eutric Cambisol), applying rain-fed and irrigated treatments. Weather as well as soil and crop processes were intensively monitored and management actions were consistently recorded. The data set contains coherent data for soil (water, nitrogen contents), crop (ontogenesis, plant, tiller and ear numbers, above-ground and root biomasses, yield, carbon and nitrogen content in biomass and their fractions, sugar content in beet), weather (all standard meteorological variables) and management (soil tillage, sowing, fertilisation, irrigation, harvest). In addition, observation methods are briefly described. The data set is available via the Open Research Data Portal at ZALF Müncheberg and is published under doi:10.4228/ZALF.1992.271. The data set was used for model intercomparison within the crop modelling part (CropM) of the international FACCE MACSUR project.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-6378 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4762
Permanent link to this record