toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Oijen, M. url  openurl
  Title (down) Methods for risk analysis and spatial upscaling of process-based models: Experiences from projects Carbo-Extreme and GREENHOUSE Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-69  
  Keywords  
  Abstract In the recently finished EU-funded project Carbo-Extreme, we developed a simple probabilistic method for quantifying vulnerabilities and risks to ecosystems (http://iopscience.iop.org/1748-9326/8/1/015032). The method defines risk as expected loss due to environmental hazards, and shows how such risk can be calculated as the product of ecosystem vulnerability and hazard probability. The method was used with six different vegetation models to estimate current and future drought risks for crops, grasslands and forests across Europe (http://www.biogeosciences.net/11/6357/2014/bg-11-6357-2014.html).In the still ongoing UK-funded project GREENHOUSE, the focus is on spatial upscaling of local measurements and model predictions of greenhouse gas emissions to wider regions. As part of this work, we are comparing different model upscaling methods – ranging from naive input aggregation to geostatistics – and quantify the uncertainties associated with the upscaling. This work builds on an earlier inventory of model upscaling methods that was produced in a collaboration of CEH-Edinburgh and the University of Bonn (https://www.stat.aau.at/Tagungen/statgis/2009/StatGIS2009Van%20Oijen1.pdf). Here we show a comparison of the methods using model predictions for the border region of England and Scotland. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2184  
Permanent link to this record
 

 
Author Knox, J. url  openurl
  Title (down) Meta-analysis of recent scientific evidence on climate impacts and uncertainty on crop yields in Europe Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-30  
  Keywords  
  Abstract Projected changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security (Daccache et al., 2014). We assessed the projected impacts of climate change on the yield of seven crops (viz wheat, barley, maize, potato, sugar beet, rice and rye) in Europe using a systematic review (SR) and meta-analysis of data reported in 67 original publications from an initial screening of 1424 studies. Whilst similar studies exist for Africa and South Asia (Roudier et al., 2011; Knox et al., 2012), surprisingly, no such comparable synthesis has been undertaken for Europe. Our study focussed on the biophysical impacts of climate change on productivity (i.e. yield per unit area) and did not consider ‘food production’ as this is dependent on many ‘non-biophysical’ factors, such as international trade policy and world markets. The data relate to the projected mean yield variations for each crop type, for all crop models, all GCM models and all time slices.For Europe, most studies projected a positive impact on yield; the reported increases largely being due to rising atmospheric CO2 concentrations enhancing both productivity and resource use efficiencies. Overall, a mean yield increase of +14% was identified, but with large differences between individual crops (e.g. wheat +22%; potato +12%) and regions (e.g. northern Europe +17%; southern Europe +7%). It is important to note that projected yield data were not available for all crops in all regions, so lack of a significant response may in part be due to the absence, or limited number of studies for certain crops and/or regions. Furthermore, the results include all reported yield projections, for all time slices, for all GCM combinations (whether single or ensemble) and for all crop modelling approaches (whether based on simple statistical trends or more complex biophysical modelling approaches). This highlights the magnitude of variability that exists when all possible sources of uncertainty are included. Further statistical analyses were conducted to disaggregate the data by time slice, climate and crop model to identify which factors were likely to contribute most to yield variations and uncertainty.The SR showed that evidence of climate change impacts on crop yield in Europe is extensive for wheat, maize, sugar beet and potato but very limited for barley, rice and rye. Interpreting the reported yield observations was compounded by ‘effect modifiers’ or reasons for heterogeneity. These included different emission scenarios and climate ensembles, implicit assumptions regarding crop varieties, the agricultural systems studied, and assumed levels of mechanization and crop husbandry. Despite its limitations, the SR helps identify where further research should be targeted and regions where adaptation will be most needed. It confirms that climate change is likely to increase productivity of Europe’s major agricultural cropping systems, with more favourable impacts in northern and central Europe. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2145  
Permanent link to this record
 

 
Author Bojar, W.; Żarski, J.; Knopik, L.; Kuśmierek-Tomaszewska, R.; Sikora, M.; Dzieża, G. url  openurl
  Title (down) Markov chain as a model of daily total precipitation and a prediction of future natural events Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ft_macsur; MACSUR or FACCE acknowledged.  
  Abstract The size of arable crop yields depends on many weather factors, such as precipitation and air temperature during the vegetation period. When studying the relation between yields and precipitation, not only the total amount of precipitation, but also the occurrence of long periods without precipitation must be taken into account. The paper [Bojar et al., 2014] demonstrated that barley yield significantly statistically depends on the length of the series of days without precipitation. This paper attempts to analyse the statistical data on daily precipitation totals recorded during the January – December periods in the years 1971 – 2013 at the weather station of the University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, in the Research Centre located in an agricultural area in the Mochle township, situated 17 kilometres from Bydgoszcz. The primary statistical operation in the study is an attempt to estimate the Markov chain order. To this end, two criteria of chain order determination are applied: BIC (Bayesian information criterion, Schwarz 1978) and AIC (Akaike information criterion, Akaike 1974). Both are based on the log-likelihood functions for transition probability of the Markov chain constructed on certain data series. Statistical analysis of precipitation totals data leads to the conclusion that both AIC and BIC indicate the 2nd order for the studied Markov chain. The proposed method of estimating the variability of precipitation occurrence in the future will be utilised to improve region-related bio-physical and economical models, and to assess the risk of extreme events in the context of growing climate hazards. It will serve as basis for a search in agriculture for solutions mitigating those hazards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Braunschweig (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Joint Workshops October 2015, 2015-10-27 to 2015-10-30, Braunschweig  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4236  
Permanent link to this record
 

 
Author Bojar, W.; Żarski, J.; Knopik, L.; Kuśmierek-Tomaszewska, R.; Sikora, M.; Dzieża, G. url  openurl
  Title (down) Markov chain as a model of daily total precipitation and a prediction of future natural events Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ft_macsur; MACSUR or FACCE acknowledged.  
  Abstract The size of arable crop yields depends on many weather factors, such as precipitation and air temperature during the vegetation period. When studying the relation between yields and precipitation, not only the total amount of precipitation, but also the occurrence of long periods without precipitation must be taken into account. The paper [Bojar et al., 2014] demonstrated that barley yield significantly statistically depends on the length of the series of days without precipitation. This paper attempts to analyse the statistical data on daily precipitation totals recorded during the January – December periods in the years 1971 – 2013 at the weather station of the University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, in the Research Centre located in an agricultural area in the Mochle township, situated 17 kilometres from Bydgoszcz. The primary statistical operation in the study is an attempt to estimate the Markov chain order. To this end, two criteria of chain order determination are applied: BIC (Bayesian information criterion, Schwarz 1978) and AIC (Akaike information criterion, Akaike 1974). Both are based on the log-likelihood functions for transition probability of the Markov chain constructed on certain data series. Statistical analysis of precipitation totals data leads to the conclusion that both AIC and BIC indicate the 2nd order for the studied Markov chain. The proposed method of estimating the variability of precipitation occurrence in the future will be utilised to improve region-related bio-physical and economical models, and to assess the risk of extreme events in the context of growing climate hazards. It will serve as basis for a search in agriculture for solutions mitigating those hazards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Braunschweig (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Joint Workshops October 2015, 2015-10-27 to 2015-10-30, Braunschweig  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4395  
Permanent link to this record
 

 
Author Baldinger, L.; Vaillant, J.; Zollitsch, W.; Rinne, M. url  doi
openurl 
  Title (down) Making a decision-support system for dairy farmers usable throughout Europe: the challenge of feed evaluation Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 3-5  
  Keywords dairy; feed evaluation; organic; SOLID  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4678  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: