|   | 
Details
   web
Records
Author Bojar, W.; Knopik, L.; Żarski, J.; Sławiński, C.; Baranowski, P.; Żarski, W.
Title (up) Impact of extreme climate changes on the forecasted agriculture production Type Journal Article
Year 2014 Publication Acta Agrophysica Abbreviated Journal Acta Agrophysica
Volume 21 Issue 4 Pages 415-431
Keywords agricultural economics; agriculture; climate change; crop production; integrating assessments
Abstract The paper presents general characteristics of resources and outputs of agriculture in the Kujawsko-Pomorskie and Lubelskie Regions, based on statistical databases and literature review. Some specific features of the regions, with special consideration for the predicted extreme climate changes, are also included. Next, some statistically significant dependencies between the climatic parameters and yields of selected important crops in the abovementioned regions were worked out on the basis of empirical survey conducted in the University of Technology and Life Sciences, Bydgoszcz, and the Institute of Agrophysics in Lublin. Creating an appropriate method of forecasting long series of ten days without precipitation was necessary to find the desired dependencies. Third, some efforts were taken to make integrated assessments of forecast agricultural outputs influenced by climate extreme phenomena on the basis of the yield-precipitation relations obtained and on the data coming from wide area model regional outputs such as prices of farmland and produce.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4619
Permanent link to this record
 

 
Author Höhn, J.; Rötter, R.P.
Title (up) Impact of global warming on European cereal production Type Journal Article
Year 2014 Publication CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources Abbreviated Journal CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources
Volume 9 Issue 022 Pages 1-15
Keywords Climate change; Food security; Uncertainty; Wheat; Maize; Barley
Abstract This review examines relevant impact assessments identified by a literature search from 1991to date. A bibliographic search was applied to the CAB Abstracts database with a given searchstring. Resultant papers were checked for relevance, based on expert judgment. This yielded 91 papers, which were subjected to further analysis. Firstly, publication intensity over time and distribution by geographic location and cereal crop were examined. Next, for a given crop, the assessments and their outcomes were grouped by type and number of the change variables considered – that is, effects of climate change only, elevated CO 2 and technological progress(improved breeds, management). Finally, separately for individual countries/subregions and Europe as a whole, we examined whether and to what extent study results have changed over time, for example become more positive/negative. Based on our sample, we found that publication intensity increased exponentially during thelast 4 years, the majority of studies are Europe-wide, but some concentrated on a few countries(Italy, Spain and UK), whereby studies on wheat are clearly most popular. Taking the factor of technological progress into account has an overruling influence on results. Finally, over time, projected yield impacts have become more negative. This is in line with finding from global analyses, as reflected by the most recent comparison of agricultural impact chapters, of the 4thand 5th Assessment Reports of Intergovernmental Panel on Climate Change, Working Group II.In the future, there is particular need to consider impacts under various incremental and transformational adaptation measures in more depth (e.g. their interconnections across scales)and with more breadth (e.g. anticipated new breeds). Follow-up reviews should also examine how projected impacts are changing with the new climate scenario data sets (CMIP5) and with improved impact models and assessment approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1749-8848 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4524
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R.
Title (up) Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 4 Pages
Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought
Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4814
Permanent link to this record
 

 
Author Lizaso, J.I.; Ruiz-Rarnos, M.; Rodriguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sanchez, D.; Garcia, E.; Rodriguez, A.
Title (up) Impact of high temperatures in maize: Phenology and yield components Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 216 Issue Pages 129-140
Keywords Heat stress; Maize; Kernel number; Anthesis, Beta function; Vapor-Pressure Deficit; Heat-Stress; Transpiration Response; Pollen; Viability; Leaf Appearance; Climate-Change; Kernel Number; Grain-Yield; Growth; Plants
Abstract Heat stress is a main threat to current and future global maize production. Adaptation of maize to future warmer conditions requires improving our understanding of crop responses to elevated temperatures. For this purpose, the same short-season (FAO 300) maize hybrid PR37N01 was grown over three years of field experiments on three contrasting Spanish locations in terms of temperature regime. The information complemented three years of greenhouse experiments with the same hybrid, applying heat treatments at various critical moments of the crop cycle. Crop phenology, growth, grain yield, and yield components were monitored. An optimized beta function improved the calculation of thermal time compared to the linear-cutoff estimator with base and optimum temperatures of 8 and 34 degrees C, respectively. Our results showed that warmer temperatures accelerate development rate resulting in shorter vegetative and reproductive phases (ca. 30 days for the whole cycle). Heat stress did not cause silking delay in relation to anthesis (extended anthesis-silking interval), at least in the range of temperatures (maximum temperature up to 42.9 degrees C in the field and up to 52.5 degrees C in the greenhouse) considered in this study. Our results indicated that maize grain yield is reduced under heat stress mainly via pollen viability that in turn determines kernel number, although a smaller but significant effect of the female component has been also detected.
Address 2018-02-19
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5190
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S.; Höglind, M.
Title (up) Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 71-86
Keywords climate change scenarios; crop modelling; forage grass; lingra; soil properties; spatial variability; phleum pretense; poaceae; simulation-model; nutritive-value; systems simulation; catimo model; crop models; growth; nitrogen; scale; productivity; regrowth
Abstract Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4674
Permanent link to this record