|   | 
Details
   web
Records
Author Ben Touhami, H.; Bellocchi, G.
Title (up) Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress Type Journal Article
Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics
Volume 30 Issue Pages 356-364
Keywords Bayesian calibration framework; Grasslands; Pasture Simulation model; (PaSim); integrated assessment models; chain monte-carlo; climate-change; computation; impacts; vulnerability; likelihoods; france
Abstract As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1574-9541 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4697
Permanent link to this record
 

 
Author Holman, I.P.; Brown, C.; Janes, V.; Sandars, D.
Title (up) Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 151 Issue Pages 126-135
Keywords Climate change, Socio-economic change, Impacts, Integrated assessment, Uncertainty; Climate-Change Impacts; Water-Based Sectors; North-West England; Socioeconomic Change; Change Vulnerability; East-Anglia; Adaptation; Policy; Uncertainties; Agriculture
Abstract The global land system is facing unprecedented pressures from growing human populations and climatic change. Understanding the effects these pressures may have is necessary to designing land management strategies that ensure food security, ecosystem service provision and successful climate mitigation and adaptation. However, the number of complex, interacting effects involved makes any complete understanding very difficult to achieve. Nevertheless, the recent development of integrated modelling frameworks allows for the exploration of the co-development of human and natural systems under scenarios of global change, potentially illuminating the main drivers and processes in future land system change. Here, we use one such integrated modelling framework (the CLIMSAVE Integrated Assessment Platform) to investigate the range of projected outcomes in the European land system across climatic and socio-economic scenarios for the 2050s. We find substantial consistency in locations and types of change even under the most divergent conditions, with results suggesting that climate change alone will lead to a contraction in the agricultural and forest area within Europe, particularly in southern Europe. This is partly offset by the introduction of socioeconomic changes that change both the demand for agricultural production, through changing food demand and net imports, and the efficiency of agricultural production. Simulated extensification and abandonment in the Mediterranean region is driven by future decreases in the relative profitability of the agricultural sector in southern Europe, owing to decreased productivity as a consequence of increased heat and drought stress and reduced irrigation water availability. The very low likelihood (<33% probability) that current land use proportions in many parts of Europe will remain unchanged suggests that future policy should seek to promote and support the multifunctional role of agriculture and forests in different European regions, rather than focusing on increased productivity as a route to agricultural and forestry viability.
Address 2017-02-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LiveM, TradeM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4937
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P.
Title (up) Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 209-224
Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation
Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Address 2018-01-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5186
Permanent link to this record
 

 
Author Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E.; Kyle, P.; Von Lampe, M.; Lotze-Campen, H.; Mason d’Croz, D.; van Meijl, H.; van der Mensbrugghe, D.; Müller, C.; Popp, A.; Robertson, R.; Robinson, S.; Schmid, E.; Schmitz, C.; Tabeau, A.; Willenbockel, D.
Title (up) Climate change effects on agriculture: economic responses to biophysical shocks Type Journal Article
Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages 3274-3279
Keywords Agriculture/*economics; Carbon Dioxide/analysis; *Climate Change; Commerce/statistics & numerical data; Computer Simulation; Crops, Agricultural/*growth & development; Forecasting; Humans; *Models, Economic; agricultural productivity; climate change adaptation; integrated assessment; model intercomparison
Abstract Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4535
Permanent link to this record
 

 
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W.
Title (up) Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 157 Issue Pages 81-92
Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254
Abstract Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.
Address 2017-11-02
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5178
Permanent link to this record