|   | 
Details
   web
Records
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R.
Title (down) Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 4 Pages
Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought
Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4814
Permanent link to this record
 

 
Author Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.; Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.
Title (down) Heat stress is overestimated in climate impact studies for irrigated agriculture Type Journal Article
Year 2017 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 12 Issue 5 Pages 054023
Keywords heat stress; climate change impact assessment; irrigation; canopy temperature; CANOPY TEMPERATURE; WINTER-WHEAT; WATER-STRESS; CROP YIELDS; GROWTH; MAIZE; DROUGHT; UNCERTAINTY; ENVIRONMENT; PHENOLOGY
Abstract Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr(-1) (2%) and 0.6 Mg yr(-1) (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr (1) (16%) for irrigated winter wheat and 4.1 Mg yr (1) (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.
Address 2017-06-22
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5035
Permanent link to this record
 

 
Author Sanz-Cobena, A.; Sánchez-Martín, L.; García-Torres, L.; Vallejo, A.
Title (down) Gaseous emissions of N2O and NO and NO3 − leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop Type Journal Article
Year 2012 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.
Volume 149 Issue Pages 64-73
Keywords Urease inhibitor; Nitrogen losses; Irrigation; Nitrification
Abstract Urea has become the predominant source of synthetic nitrogen (N) fertilizer used throughout the world. Among the various available mitigation tools, urease inhibitors like NBPT have the most potential to improve efficiency of urea by reducing N losses, mainly via ammonia volatilization. However, there is a lack of information on the effect of N-(n-butyl) thiophosphoric triamide (NBPT) on other N losses such as gaseous emissions of N2O and NO and NO3− leaching. A two-year field experiment using irrigated maize (Zea mays) crop was carried out under Mediterranean conditions to evaluate the effectiveness of urea coated with NBPT (0.4%, w/w) alone and with both NBPT and nitrification inhibitor dicyandiamide (DCD) (0.4 and 3%, w/w, respectively) to mitigate N2O–N, NO–N and NO3−–N losses. The different treatments of U, U+NBPT and U+NBPT+DCD were applied to the maize crop in 2009 and then in 2010. The 2010 maize crop followed a fallow period, during which the 2009 crop residues were incorporated into the soil. Two different irrigation regimes were followed each year. In 2009, irrigation was controlled for the first 2 weeks following urea fertilization; whereas, the 2010 crop period was characterized by increased irrigation in the same period. After each treatment application, measurements of the changes in soil mineral N, gaseous emissions of N2O and NO, nitrate leaching and biomass production were made. N2O emissions were effectively abated by NBPT and NBPT+DCD and were reduced by 54 and 24%, respectively, in 2009. A reduction in nitrification rate by the inhibitors was also observed during 2009. In 2010 cropping period, NBPT reduced N2O emissions by 4%; while the combination of NBPT and DCD treatment reduced N2O emission by 43%. Yield-scaled N2O emissions were reduced by 50 and 18% by NBPT and the mixture of NBPT+DCD, respectively, in 2009. Applying inhibitors did not have any significant effect on yield-scaled N2O emissions in the 2010 crop period. Total NO losses from urea were 2.25 kg NO–N ha−1 in the 2009 crop period and 5 times lower in the following year; this may provide an indicator of the prevalence of nitrification as the main process in the production of N2O in the 2009 maize crop. Most of the NO3− was lost within the fallow period (i.e. 92, 81 and 75% of the total NO3− leached for U, U+NBPT and U+NBPT+DCD, respectively), so the incorporation of crop residues was not as effective as expected at reducing these N losses. Our study suggests that the effectiveness of NBPT and combination of NBPT+DCD in reducing N losses from applied urea is influenced by management practices, such as irrigation, and climatic conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4593
Permanent link to this record
 

 
Author García-López, J.; Lorite, I.J.; García-Ruiz, R.; Domínguez, J.
Title (down) Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 124 Issue 1-2 Pages 147-162
Keywords winter-wheat; water-stress; irrigation management; high-temperature; oil quality; oilcrop-sun; crop model; responses; variability; growth
Abstract The determination of the impact of climate change on crop yield at a regional scale requires the development of new modelling methodologies able to generate accurate yield estimates with reduced available data. In this study, different simulation approaches for assessing yield have been evaluated. In addition to two well-known models (AquaCrop and Stewart function), a methodological proposal considering a simplified approach using an empirical model (SOM) has been included in the analysis. This empirical model was calibrated using rainfed sunflower experimental field data from three sites located in Andalusia, southern Spain, and validated using two additional locations, providing very satisfactory results compared with the other models with higher data requirements. Thus, only requiring weather data (accumulated rainfall from the beginning of the season fixed on September 1st, and maximum temperature during flowering) the approach accurately described the temporal and spatial yield variability observed (RMSE = 391 kg ha(-1)). The satisfactory results for assessing yield of sunflower under semi-arid conditions obtained in this study demonstrate the utility of empirical approaches with few data requirements, providing an excellent decision tool for climate change impact analyses at a regional scale, where available data is very limited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 1573-1480 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4622
Permanent link to this record
 

 
Author Lorite, I.J.; Gabaldon-Leal, C.; Ruiz-Ramos, M.; Belaj, A.; de la Rosa, R.; Leon, L.; Santos, C.
Title (down) Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions Type Journal Article
Year 2018 Publication Agricultural Water Management Abbreviated Journal Agric. Water Manage.
Volume 204 Issue Pages 247-261
Keywords Irrigation requirements; Yield; Irrigation water productivity; Olive; Climate change; Olea-Europaea L.; Different Irrigation Regimes; Water Deficits; Iberian; Peninsula; CO2 Concentration; Potential Growth; Atmospheric CO2; Southern Spain; Change Impacts; River-Basin
Abstract AdaptaOlive is a simplified physically-based model that has been developed to assess the behavior of olive under future climate conditions in Andalusia, southern Spain. The integration of different approaches based on experimental data from previous studies, combined with weather data from 11 climate models, is aimed at overcoming the high degree of uncertainty in the simulation of the response of agricultural systems under predicted climate conditions. The AdaptaOlive model was applied in a representative olive orchard in the Baeza area, one of the main producer zone in Spain, with the cultivar ‘Picual’. Simulations for the end of the 21st century showed olive oil yield increases of 7.1 and 28.9% under rainfed and full irrigated conditions, respectively, while irrigation requirements decreased between 0.5 and 6.2% for full irrigation and regulated deficit irrigation, respectively. These effects were caused by the positive impact of the increase in atmospheric CO2 that counterbalanced the negative impacts of the reduction in rainfall. The high degree of uncertainty associated with climate projections translated into a high range of yield and irrigation requirement projections, confirming the need for an ensemble of climate models in climate change impact assessment. The AdaptaOlive model also was applied for evaluating adaptation strategies related to cultivars, irrigation strategies and locations. The best performance was registered for cultivars with early flowering dates and regulated deficit irrigation. Thus, in the Baeza area full irrigation requirements were reduced by 12% and the yield in rainfed conditions increased by 7% compared with late flowering cultivars. Similarly, regulated deficit irrigation requirements and yield were reduced by 46% and 18%, respectively, compared with full irrigation. The results confirm the promise offered by these strategies as adaptation measures for managing an olive crop under semi-arid conditions in a changing climate.
Address 2018-06-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-3774 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5204
Permanent link to this record