toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Milford, A.B. openurl 
  Title Achieving Emission Reduction Targets by Changing Eating Habits in Norway Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords TradeM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Forskermøtet 2015, The 37th Annual Meeting of the Norwegian Association of Economists, 2015-01-05 to 2015-01-06  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2639  
Permanent link to this record
 

 
Author Xiao, D.P.; Tao, F.L. url  doi
openurl 
  Title Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009 Type Journal Article
  Year 2016 Publication International Journal of Biometeorology Abbreviated Journal International Journal of Biometeorology  
  Volume 60 Issue 7 Pages 1111-1122  
  Keywords Adaptation; Agronomic practice; Maize yield; Negative impact; Climate; change; model; variability; performance; simulation; province; apsim; gaps  
  Abstract The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7128 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4779  
Permanent link to this record
 

 
Author McIntyre, M. url  openurl
  Title Predicting the effects of climate change on pathogens Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords LiveM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Workshop: Modelling interactions between climate and livestock pathogen transmission, 2014-01-22 to 2014-01-22  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2636  
Permanent link to this record
 

 
Author Banse, M.; Brouwer, F.; Palatnik, R.R.; Sinabell, F. url  openurl
  Title The Economics of European Agriculture under Conditions of Climate Change (Editorial) Type Journal Article
  Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages 131-132  
  Keywords  
  Abstract This Special Issue on “The Economics of European Agriculture under Conditions of Climate Change” brings together a selection of papers that contribute to the understanding of recent developments related to agriculture and climate change in four European coun- tries. The focus of the Special Issue is on quantitative modeling and empirical analyses. The papers presented here not only cover the heterogeneity of agriculture in Europe with case studies from the Mediterranean (Italy), central (Austria) and north-western Europe (Ireland and Scotland) but also give insights into the diversity of quantitative modeling approaches in agriculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Editorial material  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4763  
Permanent link to this record
 

 
Author Höglind, M.; Van Oijen, M.; Cameron, D.; Persson, T. doi  openurl
  Title Process-based simulation of growth and overwintering of grassland using the BASGRA model Type Journal Article
  Year 2016 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 335 Issue Pages 1-15  
  Keywords Cold hardening; Frost injury; Phleum pratense L.; Process-based; modelling; Winter survival; Yield; low-temperature tolerance; perennial forage crops; dry-matter; production; climate-change; nutritive-value; snow-cover; bayesian; calibration; timothy regrowth; phleum-pratense; lolium-perenne  
  Abstract Process-based models (PBM) for simulation of weather dependent grass growth can assist farmers and plant breeders in addressing the challenges of climate change by simulating alternative roads of adaptation. They can also provide management decision support under current conditions. A drawback of existing grass models is that they do not take into account the effect of winter stresses, limiting their use for full-year simulations in areas where winter survival is a key factor for yield security. Here, we present a novel full-year PBM for grassland named BASGRA. It was developed by combining the LINGRA grassland model (Van Oijen et al., 2005a) with models for cold hardening and soil physical winter processes. We present the model and show how it was parameterized for timothy (Phleum pratense L.), the most important forage grass in Scandinavia and parts of North America and Asia. Uniquely, BASGRA simulates the processes taking place in the sward during the transition from summer to winter, including growth cessation and gradual cold hardening, and functions for simulating plant injury due to low temperatures, snow and ice affecting regrowth in spring. For the calibration, we used detailed data from five different locations in Norway, covering a wide range of agroclimatic regions, day lengths (latitudes from 59 degrees to 70 degrees N) and soil conditions. The total dataset included 11 variables, notably above-ground dry matter, leaf area index, tiller density, content of C reserves, and frost tolerance. All data were used in the calibration. When BASGRA was run with the maximum a-posteriori (MAP) parameter vector from the single, Bayesian calibration, nearly all measured variables were simulated to an overall normalized root mean squared error (NRMSE) <0.5. For many site x experiment combinations, NRMSE was <0.3. The temporal dynamics were captured well for most variables, as evaluated by comparing simulated time courses versus data for the individual sites. The results may suggest that BASGRA is a reasonably robust model, allowing for simulation of growth and several important underlying processes with acceptable accuracy for a range of agroclimatic conditions. However, the robustness of the model needs to be tested further using independent data from a wide range of growing conditions. Finally we show an example of application of the model, comparing overwintering risks in two climatically different sites, and discuss future model applications. Further development work should include improved simulation of the dynamics of C reserves, and validation of winter tiller dynamics against independent data. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2016-07-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4764  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: