|   | 
Details
   web
Records
Author Dáder, B.; Gwynn-Jones, D.; Moreno, A.; Winters, A.; Fereres, A.
Title Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants Type Journal Article
Year 2014 Publication Journal of Photochemistry and Photobiology B: Biology Abbreviated Journal J. Photochem. Photobiol. B
Volume 138 Issue Pages 307-316
Keywords Amino Acids/analysis; Animals; Aphids/*radiation effects; Capsicum/metabolism/parasitology/radiation effects; Carbohydrates/analysis; Chromatography, High Pressure Liquid; Female; Fertility/radiation effects; Hemiptera/*radiation effects; Mass Spectrometry; Phenols/analysis/chemistry; Plant Leaves/metabolism/parasitology/radiation effects; Plants/parasitology/*radiation effects; Proteins/analysis; Solanum melongena/metabolism/parasitology/radiation effects; Time Factors; *Ultraviolet Rays; Eggplant; Insect pests; Pepper; Plant-insect interactions; UV-blocking covers
Abstract Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition – proteins and sugars – were unaltered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1011-1344 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4517
Permanent link to this record
 

 
Author Sieber, S.; Amjath-Babu, T.S.; McIntosh, B.S.; Tscherning, K.; Müller, K.; Helming, K.; Pohle, D.; Fricke, K.; Verweij, P.; Pacini, C.; Jansson, T.; Gomez y Paloma, S.
Title Evaluating the characteristics of a non-standardised Model Requirements Analysis (MRA) for the development of policy impact assessment tools Type Journal Article
Year 2013 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 49 Issue Pages 53-63
Keywords impact assessment tools; iat; siat; sustainability; model requirements analysis; user requirement analysis; support; systems; design; methodology; management; decision; science
Abstract The aim of this paper is to provide a critical analysis of the strengths and weaknesses of a non-standardised Model Requirements Analysis (MRA) used for the purpose of developing the Sustainability Impact Assessment Tool (SIAT). By ‘non-standardised’ we mean not strictly following a published MRA method. The underlying question we are interested in addressing is how non-standardised methods, often employed in research driven projects, compare to defined methods with more standardised structure, with regards their ability to capture model requirements effectively, and with regards their overall usability. Through describing and critically assessing the specific features of the non-standardised MRA employed, the ambition of this paper is to provide insights useful for impact assessment tool (IAT) development. Specifically, the paper will (i) characterise kinds of user requirements relevant to the functionality and design of IATs; (ii) highlight the strengths and weaknesses of non-standardised MRA for user requirements capture, analysis and reflection in the context of IAT; (iii) critically reflect on the process and outcomes of having used a non-standardised MRA in comparison with other more standardised approaches. To accomplish these aims, we first review methods available for IAT development before describing the SIAT development process, including the MRA employed. Major strengths and weaknesses of the MRA method are then discussed in terms of user identification and characterisation, organisational characterisation and embedding, and ability to capture design options for ensuring usability and usefulness. A detailed assessment on the structural differences of MRA with two advanced approaches (Integrated DSS design and goal directed design) and their role in performance of the MRA tool is used to critique the approach employed. The results show that MRA is able to bring thematic integration, establish system performance and technical thresholds as well as detailing quality and transparency guidelines. Nevertheless the discussion points out to a number of deficiencies in application – (i) a need to more effectively characterise potential users, and; (ii) a need to better foster communication among the distinguished roles in the development process. If addressed these deficiencies, SIAT non-standardised MRA could have brought out better outcomes in terms of tool usability and usefulness, and improved embedding of the tool into conditions of targeted end-users. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4506
Permanent link to this record
 

 
Author Sanna, M.; Bellocchi, G.; Fumagalli, M.; Acutis, M.
Title A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models Type Journal Article
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 73 Issue Pages 286-304
Keywords model evaluation; performance indicators; stable correlation; solar-radiation; simulation-model; environmental-models; statistical-methods; crop nitrogen; validation; rice; uncertainty; calibration; software
Abstract The use of a variety of metrics is advocated to assess model performance but correlated metrics may convey the same information, thus leading to redundancy. Starting from this assumption, a method was developed for selecting, from among a collection of performance indicators, one or more subsets providing the same information as the entire set. The method, based on the definition of “stable correlation”, was applied to 23 performance indicators of agrometeorological models, calculated on large sets of simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Two subsets were determined: {Squared Bias, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index, Modified Modelling Efficiency}, {Persistence Model Efficiency, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index}. The method needs corroboration but is statistically founded and can support the implementation of standardized evaluation tools. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4503
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Destain, M.-F.
Title Modeling and prediction of nonlinear environmental system using Bayesian methods Type Journal Article
Year 2013 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture
Volume 92 Issue Pages 16-31
Keywords state and parameter estimation; variational filter; particle filter; extended kalman filter; nonlinear environmental system; leaf area index and soil moisture model; extended kalman filter; state-space models; parameter-estimation; particle filters; navigation; tutorial; tracking
Abstract An environmental dynamic system is usually modeled as a nonlinear system described by a set of nonlinear ODEs. A central challenge in computational modeling of environmental systems is the determination of the model parameters. In these cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. This work addresses the problem of monitoring and modeling a leaf area index and soil moisture model (LSM) using state estimation. The performances of various conventional and state-of-the-art state estimation techniques are compared when they are utilized to achieve this objective. These techniques include the extended Kalman filter (EKF), particle filter (PF), and the more recently developed technique variational filter (VF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the leaf-area index LAI, the volumetric water content of the soil layer 1, HUR1 and the volumetric water content of the soil layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of number of estimated model parameters on the accuracy and convergence of these techniques are also assessed. The results of both comparative studies show that the PF provides a higher accuracy than the EKF, which is due to the limited ability of the EKF to handle highly nonlinear processes. The results also show that the VF provides a significant improvement over the PF because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the VF yields an optimum choice of the sampling distribution, which also accounts for the observed data. The results of the second comparative study show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as the convergence of the estimated states and parameters. However, the VF can still provide both convergence as well as accuracy related advantages over other estimation methods. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4495
Permanent link to this record
 

 
Author Conradt, T.; Wechsung, F.; Bronstert, A.
Title Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances Type Journal Article
Year 2013 Publication Hydrology and Earth System Sciences Abbreviated Journal Hydrol. Earth System Sci.
Volume 17 Issue 7 Pages 2947-2966
Keywords senegal river-basin; data assimilation; sensing data; regional evapotranspiration; intercomparison project; environmental-models; oklahoma experiments; solar-radiation; satellite data; scale
Abstract A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1607-7938 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4485
Permanent link to this record