|   | 
Details
   web
Records
Author Liu, B.; Martre, P.; Ewert, F.; Porter, J.R.; Challinor, A.J.; Mueller, C.; Ruane, A.C.; Waha, K.; Thorburn, P.J.; Aggarwal, P.K.; Ahmed, M.; Balkovic, J.; Basso, B.; Biernath, C.; Bindi, M.; Cammarano, D.; De Sanctis, G.; Dumont, B.; Espadafor, M.; Rezaei, E.E.; Ferrise, R.; Garcia-Vila, M.; Gayler, S.; Gao, Y.; Horan, H.; Hoogenboom, G.; Izaurralde, R.C.; Jones, C.D.; Kassie, B.T.; Kersebaum, K.C.; Klein, C.; Koehler, A.-K.; Maiorano, A.; Minoli, S.; San Martin, M.M.; Kumar, S.N.; Nendel, C.; O’Leary, G.J.; Palosuo, T.; Priesack, E.; Ripoche, D.; Roetter, R.P.; Semenov, M.A.; Stockle, C.; Streck, T.; Supit, I.; Tao, F.; Van der Velde, M.; Wallach, D.; Wang, E.; Webber, H.; Wolf, J.; Xiao, L.; Zhang, Z.; Zhao, Z.; Zhu, Y.; Asseng, S.
Title Global wheat production with 1.5 and 2.0 degrees C above pre-industrial warming Type Journal Article
Year 2019 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 25 Issue 4 Pages 1428-1444
Keywords 1.5 degrees C warming; climate change; extreme low yields; food security; model ensemble; wheat production; Climate-Change; Crop Yield; Impacts; Co2; Adaptation; Responses; Models; Agriculture; Simulation; Growth
Abstract Efforts to limit global warming to below 2 degrees C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2 degrees C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0 degrees C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5 degrees C scenario and -2.4% to 10.5% under the 2.0 degrees C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2 degrees C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.
Address 2019-04-27
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (up) Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5219
Permanent link to this record
 

 
Author Porter, J.R.; Soussana, J.-F.; Fereres, E.; Long, S.; Mohren, F.; Peltonen-Sainio, P.; von Braun, J.
Title European Perspectives: An Agronomic Science Plan for Food Security in a Changing Climate Type Book Chapter
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Co-Published With Imperial College Press Place of Publication Editor Hillel, D.; Rosenzweig, C.
Language Summary Language Original Title
Series Editor Series Title Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications Abbreviated Series Title
Series Volume (up) ICP Series on Climate Change Impacts, Adaptation, Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2732
Permanent link to this record
 

 
Author Olesen, J.E.; Porter, J.R.; Christensen, J.H.
Title Centre for Regional change in the Earth System Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Centre for Regionalchange in the Earth System (CRES, cres-centre.net) is funded by the DanishStrategic Research Council for the period 2009-2014 and is coordinated by theDanish Meteorological Institute. CRES has established a coordinated researcheffort aiming to improve societal preparedness for climate change, inparticular for Denmark. The overall objective of CRES is to extend knowledge ofand reduce the uncertainties surrounding regional climate change and itsimpacts and thereby support future climate change adaptation and mitigationpolicies. Some of the objectives that also have large synergies with theeffects in the CropM theme of MACSUR are a) to reduce uncertainty surroundingregional climate change and its impacts for the period 2020-2050 by improvingmodel formulation and process understanding; b) identify key changes andtipping points in the regional hydrological system, agriculture, freshwater andestuarine ecosystems caused by changes in seasonality, dynamics and extremeevents of precipitation, droughts, heat waves and sea level rise; c) quantifyconfidence and uncertainties in predictions of future regional climate and itsimpacts, by improving the statistical methodology and substance and byintegrating interdisciplinary risk analyses; d) interpret these results inrelation to risk management approaches for climate change adaptation andmitigation. Studies in CRES of particular interest to MACSUR include a)Estimation on generic crop model uncertainties in projection of climate changeimpacts on wheat year, b) Assessment of uncertainties in projected effects onwater balance, crop productivity and nitrate leaching of changes in land use,climate and assessment models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume (up) 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5059
Permanent link to this record
 

 
Author Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I.
Title Food security and food production systems Type Book Chapter
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 485-533
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Cambridge University Press Place of Publication Cambridge, United Kingdom and New York, NY, USA Editor Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; Girma, B.; Kissel, E.S.; Levy, A.N.; MacCracken, S.; Mastrandrea, P.R.; White, L.L.
Language Summary Language Original Title
Series Editor Series Title Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC) Abbreviated Series Title
Series Volume (up) Climate Change 2014: Impacts, Adaptation, and Vuln Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2734
Permanent link to this record