toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark Type Journal Article
  Year 2014 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume 10 Issue Pages 79-83  
  Keywords soil organic matter; winter wheat production; informed decision-making; ecosystem function; ecosystem service; soil carbon sequestration; organic-matter dynamics; mitigate climate-change; calibration; validation; land  
  Abstract With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2212-0416 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4625  
Permanent link to this record
 

 
Author Persson, T.; Höglind, M.; Gustavsson, A.-M.; Halling, M.; Jauhiainen, L.; Niemeläinen, O.; Thorvaldsson, G.; Virkajärvi, P. doi  openurl
  Title Evaluation of the LINGRA timothy model under Nordic conditions Type Journal Article
  Year 2014 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 161 Issue Pages 87-97  
  Keywords crop model; forage grass; perennial ley; simulation model; nutritive-value; climate-change; systems simulation; growth; dynamics; crop; performance; regrowth; calibration; pastures  
  Abstract Simulation models are frequently applied to determine the production potential of forage grasses under various scenarios, including climate change. Thorough calibrations and evaluations of forage grass models can help improve their applicability. This study evaluated the ability of the Light Interception and Utilization Simulator-GRAss (LINGRA) model to predict biomass yield of timothy (Phleum pratense L. cv. Grindstad) in the Nordic countries. Variety trial data for the first and second year after establishment were obtained for seven locations: Jokioinen, Finland (60 degrees 48 ‘ N; 23 degrees 29 ‘ E), Maaninka, Finland (63 degrees 09 ‘ N; 27 degrees 18 ‘ E), Korpa, Iceland (64 degrees 09 ‘ N; 21 degrees 45 ‘ W), Srheim, Norway (58 degrees 41 ‘ N; 5 degrees 39 ‘ E), Lillerud, Sweden (59 degrees 24’ N; 13 degrees 16 ‘ E), Ostersund, Sweden (63 degrees 15 ‘ N; 14 degrees 34 ‘ E) and Ulna Sweden (63 degrees 49 ‘ N; 20 degrees 13 ‘ E) from 1992 to 2012. Two calibrations of the LINGRA model were carried out using Bayesian techniques. In the first of these (SRrheim calibration), data on biomass yield and underlying variables obtained from independent field trials at Srheim were used. In the second (Nordic calibration), biomass data from the other locations were used as well. The model was validated against the remaining set of biomass yields from all locations not included in the Nordic calibration. The observed total seasonal yield the first and second year after establishment was 913 and 991 g DM m(-2) respectively on average across the locations. The corresponding average simulated yield after the Srheim calibration was 1044 (root mean square error (RMSE) 258) and 1112 g DM m(-2) (RMSE 312), respectively. After the Nordic calibration, the simulated average total seasonal yield was 863 (RMSE 242) the first year and 927 g DM m(-2) (RMSE 271) the second year after establishment. The differences between the observed and simulated first cut yield followed the same patterns, whereas the prediction accuracy for second cut yield did not differ substantially between the calibration approaches.Using the parameter set from the Nordic region decreased the model predictability at Srheim compared with only using model parameters derived from this location. These results show that using biomass data from several locations, instead of only one specific location, in the calibration of the LINGRA model improved the overall prediction accuracy of first cut dry matter yield and total seasonal dry matter yield across an environmentally heterogeneous region. To further analyse the usefulness of including multi-site data in forage grass model calibrations, other forage grass models could be evaluated against the same dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4634  
Permanent link to this record
 

 
Author Perego, A.; Giussani, A.; Sanna, M.; Fumagalli, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. openurl 
  Title The ARMOSA simulation crop model: overall features, calibration and validation results Type Journal Article
  Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 3 Issue Pages 23-38  
  Keywords simulation model; crop growth; water dynamics; nitrogen leaching; performance assessment; nitrogen dilution curve; field-scale; soil; systems; maize; water; dynamics; growth; winter; evaporation  
  Abstract ARMOSA is a dynamic simulation model which was developed to simulate crop growth and development, water and nitrogen dynamics under different pedoclimatic conditions and cropping systems in the arable land. The model is meant to be a tool for the evaluation of the impact of different crop management practices on soil nitrogen and carbon cycles and groundwater nitrate pollution. A large data set collected over three to six years from six monitoring sites in Lombardia plain was used to calibrate and validate the model parameters. Measured meteorological data, soil chemical and physical characterizations, crop-related data of different cropping systems allowed for a proper parameterization. Fit indexes showed the reliability of the model in adequately predicting crop-related variables, such as above ground biomass (RRMSE=11.18, EF=0.94, r=0.97), Leaf Area Index maximum value (RRMSE=8.24, EF=0.37, r=0.72), harvest index (RRMSE=19.4, EF=0.32, r=0.74), and crop N uptake (RRMSE=20.25, EF=0.69, r=0.85). Using two different one-year data set from each monitoring site, the model was calibrated and validated, getting to encouraging results: RRMSE=6.28, EF=0.52, r=0.68 for soil water content at different depths, and RRMSE=34.89, EF=0.59, r=0.75 for soil NO3-N content along soil profile. The simulated N leaching was in full agreement with measured data (RRMSE=26.62, EF=0.88, r=0.98).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2038-5625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4612  
Permanent link to this record
 

 
Author Eitzinger, J.; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rotter, R.; Kersebaum, K.C.; Olesen, J.E.; Patil, R.H.; Saylan, L.; Caldag, B.; Caylak, O. doi  openurl
  Title Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria Type Journal Article
  Year 2013 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 151 Issue 6 Pages 813-835  
  Keywords simulate yield response; climate-change scenarios; central-europe; nitrogen dynamics; high-temperature; future climate; elevated co2; soil; growth; variability  
  Abstract The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0021-8596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4601  
Permanent link to this record
 

 
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.-C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Takáč, J.; Trnka, M. doi  openurl
  Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
  Year 2012 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 133 Issue Pages 23-36  
  Keywords Climate; Crop growth simulation; Model comparison; Spring barley; Yield variability; Uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity  
  Abstract ► We compared nine crop simulation models for spring barley at seven sites in Europe. ► Applying crop models with restricted calibration leads to high uncertainties. ► Multi-crop model mean yield estimates were in good agreement with observations. ► The degree of uncertainty for simulated grain yield of barley was similar to winter wheat. ► We need more suitable data enabling us to verify different processes in the models. In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4592  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: