|   | 
Details
   web
Records
Author Siczek, A.; Horn, R.; Lipiec, J.; Usowicz, B.; Łukowski, M.
Title Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions Type Journal Article
Year 2015 Publication Soil and Tillage Research Abbreviated Journal Soil and Tillage Research
Volume 153 Issue Pages 175-184
Keywords straw mulch; soil temperature; soil matric potential; soil penetration resistance; soybean biomass; seed and protein yield; water productivity; bulk-density; management-practices; crop production; n-2 fixation; compaction; growth; nitrogen; yield; straw; temperature
Abstract A field experiment was conducted on Haplic Luvisol developed from loess to assess the effects of soil deformation and straw mulch on soil water status (matric potential), temperature, penetration resistance, soybean growth, seed yield and yield components including straw, protein and oil in 2006-2008. Water use efficiencies related to the amount of rainfall during the growing seasons were calculated for seeds and total above ground biomass. The soil deformation levels (main plots) comprised the following trials: non-compacted (NC, 0 tractor pass), moderately compacted (MC, 3 passes), and strongly compacted (SC, 5 passes). A uniform seedbed in all plots was prepared by harrowing before planting. The main plots included sub-plots without and with surface wheat straw mulch (0.5 kg m(-2)) and the corresponding trials were NC + M, MC + M, SC + M. The amount and distribution of rainfall during the growing season differed among the experimental years with extended drought at bloom-full seed (R2-R6) stages in 2006, good water supply in 2007, and alternative periods with relatively high and low rainfalls in 2008. The effect of soil deformation on matric potential was influenced by weather conditions, soybean growth phase, mulching and depth. The differences were greatest in 2007 and 2008 at R7-R8 growth stages. With increasing deformation level from NC to SC matric potential for 0-15 cm depth during these stages significantly decreased from -401 to -1184 kPa in 2007 and from -1154 to -1432 kPa in 2008. On mulched soil, the corresponding ranges were from -541 to -841 klpa and from -748 to -1386 kPa, respectively. In the dry summer 2006, the differences were smaller and less consistent. Irrespective of soil deformation level, mulching reduced soil temperature in most growth phases but most pronounced initially. Most yield components increased from NC to MC during the experiments which could be attributed to enhanced root water and nutrient uptake rates and decreased from MC to SC due to high soil strength that restrained root growth down to deeper depth. The yields of seeds, straw, protein and oil as well as water productivity of soybean seed and biomass were improved by mulching in 2007-2008. This improvement was more pronounced in 2007 when the mean yield of seeds, protein and oil were significantly greater by 16, 29 and 11%, respectively and was attributed to positive alterations in soil water retention. These results indicate the possibilities of improvement in soybean performance by identifying allowable amount of traffic and mulching practices at planting depending on weather fluctuations during the growing season. Since rainfall and air temperature distribution in 2007 are close to those averaged over a long period of time, the use of straw mulch may positively affect soybean performance and yields excluding anomalously dry years. The positive effect of straw mulch can be enhanced by moderate soil deformation combined with seedbed loosening before planting to avoid constraining effect of soil structure on crop establishment. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-1987 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (up) 4732
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Lorite, I.J.; Mínguez, M.I.; Lizaso, J.I.; Dosio, A.; Sanchez, E.; Ruiz-Ramos, M.
Title Strategies for adapting maize to climate change and extreme temperatures in Andalusia, Spain Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 159-173
Keywords climate change; impact; adaptation; maize; crop model; regional climate model; extreme temperature; elevated carbon-dioxide; iberian peninsula; future climate; mediterranean environment; crop productivity; model simulations; pollen viability; european climate; bias correction; change impacts
Abstract Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme T-max damages in all locations, with the exception of Granada, where losses were limited to 8%.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (up) 4738
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.
Title Water savings potentials of irrigation systems: global simulation of processes and linkages Type Journal Article
Year 2015 Publication Hydrology and Earth System Sciences Abbreviated Journal Hydrol. Earth System Sci.
Volume 19 Issue 7 Pages 3073-3091
Keywords surface-water; vegetation model; climate-change; food demand; fresh-water; efficiency; productivity; groundwater; impacts; requirements
Abstract Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also nontrivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km(3) (2004-2009 average); irrigation water consumption is calculated to be 1257 km(3), of which 608 km(3) are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world’s river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing potential future transitions in these systems. In this paper, presented opportunities associated with irrigation improvements are significant and suggest that they should be considered an important means on the way to sustainable food security.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1607-7938 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (up) 4739
Permanent link to this record
 

 
Author Eyshi Rezaei, E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F.
Title Heat stress in cereals: Mechanisms and modelling Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 64 Issue Pages 98-113
Keywords high temperature; heat stress; cereal yield; climate change impact; crop modelling; high-temperature stress; tropical maize hybrids; triticum-aestivum l; high-yielding rice; induced spikelet sterility; stem reserve mobilization; climate-change impacts; oryza-sativa l.; grain-yield; kernel set
Abstract Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (up) 4741
Permanent link to this record
 

 
Author Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W.
Title Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 141 Issue Pages 160-173
Keywords Integrated assessment; Global change; Sustainability; Agriculture; Farm; structural change; Spatially explicit; Climate smart agriculture; affecting land-use; integrated assessment; multiobjective optimization; analytical framework; trade-offs; systems; uncertainties; policies; future; adaptation
Abstract Changes in climate, technology, policy and prices affect agricultural and rural development. To evaluate whether this development is sustainable, impacts of these multiple drivers need to be assessed for multiple indicators. In a case study area in the Netherlands, a bio-economic farm model, an agent-based land-use change model, and a regional emission model have been used to simulate rural development under two plausible global change scenarios at both farm and landscape level. Results show that in this area, climate change will have mainly negative economic impacts (dairy gross margin, arable gross margin, economic efficiency, milk production) in the warmer and drier W+ scenario, while impacts are slightly positive in the G scenario with moderate climate change. Dairy farmers are worse off than arable farmers in both scenarios. Conversely, when the W+ scenario is embedded in the socio-economic Global Economy (GE) scenario, changes in technology, prices, and policy are projected to have a positive economic impact, more than offsetting the negative climate impacts. Important is, however, that environmental impacts (global warming, terrestrial and aquatic eutrophication) are largely negative and social impacts (farm size, number of farms, nature area, odour) are mixed. In the G scenario combined with the socio-economic Regional Communities (RC) scenario the average dairy gross margin in particular is negatively affected. Social impacts are similarly mixed as in the GE scenario, while environmental impacts are less severe. Our results suggest that integrated assessments at farm and landscape level can be used to guide decision-makers in spatial planning policies and climate change adaptation. As there will always be trade-offs between economic, social, and environmental impacts stakeholders need to interact and decide upon most important directions for policies. This implies a choice between production and income on the one hand and social and environmental services on the other hand
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial (up) 4742
Permanent link to this record