|   | 
Details
   web
Records
Author Ghaley, B.B.; Porter, J.R.
Title Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark Type Journal Article
Year 2014 Publication Ecosystem Services Abbreviated Journal Ecosystem Services
Volume 10 Issue Pages 79-83
Keywords soil organic matter; winter wheat production; informed decision-making; ecosystem function; ecosystem service; soil carbon sequestration; organic-matter dynamics; mitigate climate-change; calibration; validation; land
Abstract With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-0416 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial (down) 4625
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Żarski, J.; Sławiński, C.; Baranowski, P.; Żarski, W.
Title Impact of extreme climate changes on the forecasted agriculture production Type Journal Article
Year 2014 Publication Acta Agrophysica Abbreviated Journal Acta Agrophysica
Volume 21 Issue 4 Pages 415-431
Keywords agricultural economics; agriculture; climate change; crop production; integrating assessments
Abstract The paper presents general characteristics of resources and outputs of agriculture in the Kujawsko-Pomorskie and Lubelskie Regions, based on statistical databases and literature review. Some specific features of the regions, with special consideration for the predicted extreme climate changes, are also included. Next, some statistically significant dependencies between the climatic parameters and yields of selected important crops in the abovementioned regions were worked out on the basis of empirical survey conducted in the University of Technology and Life Sciences, Bydgoszcz, and the Institute of Agrophysics in Lublin. Creating an appropriate method of forecasting long series of ten days without precipitation was necessary to find the desired dependencies. Third, some efforts were taken to make integrated assessments of forecast agricultural outputs influenced by climate extreme phenomena on the basis of the yield-precipitation relations obtained and on the data coming from wide area model regional outputs such as prices of farmland and produce.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 4619
Permanent link to this record
 

 
Author Shrestha, S.; Ciaian, P.; Himics, M.; van Doorslaer, B.
Title Impacts of climate change on EU agriculture Type Journal Article
Year 2013 Publication Review of Agricultural and Applied Economics Abbreviated Journal Review of Agricultural and Applied Economics
Volume 16 Issue 2 Pages 24-39
Keywords climate change; agricultural productivity; adaptation; Europe
Abstract The current paper investigates the medium term economic impact of climate changes on the EU agriculture. The yield change data under climate change scenarios are taken from the BIOMA (Biophysical Models Application) simulation environment. We employ CAPRI modelling framework to identify the EU aggregate economic effects as well as regional impacts. We take into account supply and market price adjustments of the EU agricultural sector as well as technical adaptation of crops to climate change. Overall results indicate an increase in yields and production level in the EU agricultural sector due to the climate change. In general, there are relatively small effects at the EU aggregate. For example, the value of land use and welfare change by approximately between -2% and 0.2%. However, there is a stronger impact at regional level with some stronger effects prevailing particularly in the Central and Northern EU and smaller impacts are observed in Southern Europe. Regional impacts of climate change vary by a factor higher up to 10 relative to the aggregate EU impacts. The price adjustments reduce the response of agricultural sector to climate change in particular with respect to production and income changes. The technical adaption of crops to climate change may result in a change production and land use by a factor between 1.4 and 6 relative to no-adaptation situation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial (down) 4615
Permanent link to this record
 

 
Author Rusu, T.; Moraru, P.I.; Bogdan, I.; Pop, A.; Coste, C.; Marin, D.I.; Mihalache, M.
Title Impacts of climate change on agricultural technology management in the Transylvanian Plain, Romania Type Journal Article
Year 2013 Publication Scientific Papers, Series A. Agronomy Abbreviated Journal Scientific Papers, Series A. Agronomy
Volume Lvi Issue Pages 113-118
Keywords climate monitoring; agricultural technology management; Transylvanian Plain
Abstract The Transylvanian Plain, Romania is an important region for agronomic productivity. However, limited soils data and adoption of best management practices hinder land productivity. Soil temperatures of the Transylvanian Plain were evaluated using a set of twenty datalogging stations positioned throughout the plain. Each station stores electronic data of ground temperature on 3 different levels of depth (10, 30 and 50 cm), of soil humidity at a depth of 10 cm, of the air temperature at 1 meter and of precipitation. Monitoring the thermal and hydric regime of the area is essential in order to identify and implement sets of measures of adjustment to the impact of climatic changes. After analyzing the recorded data, thermic and hydric, in the Transylvanian Plain, we recommend as optimal sowing period, advancing those known in the literature, with 5 days for corn and soybeans, and maintaining the same optimum period for sunflower and sugar beet. Water requirements are provided in an optimum, of 58.8 to 62.1% for the spring weeding crops during the growing season, thus irrigation is necessary to ensure optimum production potential. The amount of biological active degrees registered in Transylvanian Plain shows the necessity to reconstruct crop zoning, known in the literature, for the analyzed crops: wheat, corn, soy, sunflower and sugar beet.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial (down) 4614
Permanent link to this record
 

 
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H.
Title The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change
Volume 18 Issue 3 Pages 337-359
Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge
Abstract We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1381-2386 1573-1596 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial (down) 4613
Permanent link to this record