|   | 
Details
   web
Records
Author Dietrich, J.P.; Popp, A.; Lotze-Campen, H.
Title Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model Type Journal Article
Year 2013 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 263 Issue Pages 233-243
Keywords aggregation; downscaling; clustering; information conservation; land use model; scale; scales; agriculture; simulation; dynamics; pattern
Abstract Global land-use models have to deal with processes on several spatial scales, ranging from the global scale down to the farm level. The increasing complexity of modern land-use models combined with the problem of limited computational resources represents a challenge to modelers. One solution of this problem is to perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately this type of aggregation flattens many regional differences and produces a homogenized map of the world. In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces the loss of information due to aggregation by choosing an appropriate aggregation pattern. We investigate different clustering methods, examining their quality in terms of information conservation. Our results indicate that clustering is always a good choice and preferable compared to grid-based aggregation. Although all the clustering methods we tested delivered a higher degree of information conservation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the best results for the whole range of numbers of clusters tested. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial (up) 4488
Permanent link to this record
 

 
Author Nendel, C.; Wieland, R.; Mirschel, W.; Specka, X.; Guddat, C.; Kersebaum, K.C.
Title Simulating regional winter wheat yields using input data of different spatial resolution Type Journal Article
Year 2013 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 145 Issue Pages 67-77
Keywords monica; agro-ecosystem model; dynamic modelling; scaling; input data; climate-change; crop yield; nitrogen dynamics; food security; mineral nitrogen; soil-moisture; scaling-up; model; maize; water
Abstract The success of using agro-ecosystem models for the high-resolution simulation of agricultural yields for larger areas is often hampered by a lack of input data. We investigated the effect of different spatially resolved soil and weather data used as input for the MONICA model on its ability to reproduce winter wheat yields in the Federal State of Thuringia, Germany (16,172 km(2)). The combination of one representative soil and one weather station was insufficient to reproduce the observed mean yield of 6.66 +/- 0.87 t ha(-1) for the federal state. Use of a 100 m x 100 m grid of soil and relief information combined with just one representative weather station yielded a good estimator (7.01 +/- 1.47 t ha(-1)). The soil and relief data grid used in combination with weather information from 14 weather stations in a nearest neighbour approach produced even better results (6.60 +/- 1.37 t ha(-1)); the same grid used with 39 additional rain gauges and an interpolation algorithm that included an altitude correction of temperature data slightly overpredicted the observed mean (7.36 +/- 1.17 t ha(-1)). It was concluded that the apparent success of the first two high-resolution approaches over the latter was based on two effects that cancelled each other out: the calibration of MONICA to match high-yield experimental data and the growth-defining and -limiting effect of weather data that is not representative for large parts of the region. At the county and farm level the MONICA model failed to reproduce the 1992-2010 time series of yields, which is partly explained by the fact that many growth-reducing factors were not considered in the model. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial (up) 4498
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S.
Title Crop modelling for integrated assessment of risk to food production from climate change Type Journal Article
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 72 Issue Pages 287-303
Keywords uncertainty; scaling; integrated assessment; risk assessment; adaptation; crop models; agricultural land-use; change adaptation strategies; farming systems simulation; agri-environmental systems; enrichment face experiment; high-temperature stress; change impacts; nitrogen dynamics; atmospheric co2; spring wheat
Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (up) 4521
Permanent link to this record
 

 
Author Stratonovitch, P.; Semenov, M.A.
Title Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3599-3609
Keywords Adaptation, Physiological; *Climate Change; Computer Simulation; Europe; Flowers/*physiology; *Hot Temperature; *Quantitative Trait, Heritable; Time Factors; Triticum/*growth & development/*physiology; Downscaling; LARS-WG weather generator; Sirius wheat model.; heat stress; ideotype design; impact assessment
Abstract To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Projected climatic and environmental changes emphasize the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost, and drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, the Sirius wheat model was refined by incorporating the effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number, and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. The model was used to optimize wheat ideotypes for CMIP5-based climate scenarios for 2050 at six sites in Europe with diverse climates. The yield potential for heat-tolerant ideotypes can be substantially increased in the future (e.g. by 80% at Seville, 100% at Debrecen) compared with the current cultivars by selecting an optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, at two sites, Seville and Debrecen, the grain yields of heat-sensitive ideotypes were substantially lower (by 54% and 16%) and more variable compared with heat-tolerant ideotypes, because the extended grain filling required for the increased yield potential was in conflict with episodes of high temperature during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (up) 4578
Permanent link to this record
 

 
Author Cantelaube, P.; Jayet, P.
Title Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level Type Journal Article
Year 2012 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 29 Issue Pages 35-44
Keywords Downscaling; Land use; Spatial statistics; Farm-groups; Farm Accountancy Data Network; FADN
Abstract There is a strong need for accurate and spatially referenced information regarding policy making and model linkage. This need has been expressed by land users, and policy and decision makers in order to estimate both spatially and locally the impacts of European policy (like the Common Agricultural Policy) and/or global changes on farm-groups. These entities are defined according to variables such as altitude, economic size and type of farming (referring to land uses). European farm-groups are provided through the Farm Accountancy Data Network (FADN) as statistical information delivered at regional level. The aim of the study is to map locally farm-group probabilities within each region. The mapping of the farm-groups is done in two steps: (1) by mapping locally the co-variables associated to the farm-groups, i.e. altitude and land uses; (2) by using regional FADN data as a priori knowledge for transforming land uses and altitude information into farm-groups location probabilities within each region. The downscaling process focuses on the land use mapping since land use data are originally point information located every 18 km. Interpolation of land use data is done at 100 m by using co-variables like land cover, altitude, climate and soil data which are continuous layers usually provided at fine resolution. Once the farm-groups are mapped, European Policy and global changes scenarios are run through an agro-economic model for assessing environmental impacts locally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial (up) 4582
Permanent link to this record