|   | 
Details
   web
Records
Author Semenov, M.A.
Title Heat tolerance in wheat identified as a key trait for increased yield potential in Europe under climate change Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-60
Keywords
Abstract To deliver food security for the 9 billon population in 2050, a 70% increase in world food supply will be required. Predicted climate change emphasises the need for breeding strategies that delivers both a substantial increase in yield potential and resilience to extreme weather events such as heat waves, late frost or severe drought. Heat stress around sensitive stages of wheat development has been identified as a possible threat to wheat production in Europe. However, no estimates have been made to assess yield losses due to increased frequency and magnitude of heat stress under climate change. Using existing experimental data, we refined the Sirius wheat model and incorporated effects of extreme temperature during flowering and grain filling on accelerated leaf senescence, grain number and grain weight. This allowed us, for the first time, to quantify yield losses resulting from heat stress under climate change. We used Sirius to design wheat ideotypes optimised for CMIP5-based climate scenarios for 2050 at 6 wheat growing areas in Europe. The yield potential for heat-tolerant ideotypes can be substantially increased compared with the current cultivars in the future by selecting optimal combination of wheat traits, e.g. optimal phenology and extended duration of grain filling. However, grain yield of heat-sensitive ideotypes was substantially lower and more variable in Hungary and Spain, because extending grain filling for increased yield potential was in conflict with high temperature episodes during flowering and grain filling. Despite much earlier flowering at these sites, the risk of heat stress affecting yields of heat-sensitive ideotypes remained high. Therefore, heat tolerance in wheat is likely to become a key trait for increased yield potential and yield stability in southern Europe in the future. No Label
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2175
Permanent link to this record
 

 
Author Schönhart, M.
Title Analysis of climate change adaptation with bio-economic farm models: lessons from MACSUR regional pilot studies Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-58
Keywords
Abstract Integrated land use models (ILM) featuring agronomic and economic drivers of land use are frequently applied to serve the high information demand of stakeholders. This presentation results from collaboration among bio-economic farm modelers across the MACSUR regional pilot studies (www.macsur.eu) and shall compare and finally reveal good practice examples on the representation of climate change adaptation in bio-economic farm models. First results show a considerable diversity of approaches employed in the MACSUR regional pilot studies. All are programming models that optimize more or less elaborated forms of utility. All consider or plan to consider crop yield impacts from bio-physical crop models based on daily-resolution climate data. While some models include pest and diseases or livestock impacts, none take climate change impacts on market prices or interactions among farms into account so far. Clearly, adaptation options determine the solution space and are mainly expert-based in the regional case studies. Overall, the models are normative and analyze economically rational and optimal land use and management at the farm level, capable of showing the likely direction of differences in future management as a response to exogenous parameter changes (prices, yields, disease pressure, changed policy conditions, etc.). Such detailed models and their results may be applied in stakeholder interaction. Integrating the different direct and indirect effects of climate change, including the policy dimension, is the main contribution of farm level modelling of agricultural systems in the domain of climate change adaptation research. No Label
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2173
Permanent link to this record
 

 
Author Sanz-Cobena, A.
Title Ammonia and nitrous oxide emissions from grazing cattle in Kenya Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-56
Keywords
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2171
Permanent link to this record
 

 
Author Schils, R.
Title Yield gap analysis of cereals in Europe supported by local knowledge Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-57
Keywords
Abstract The increasing demand for food requires a sustainable intensification of crop production in underperforming areas. Many global and local studies have addressed yield gaps, i.e. the difference between potential or water-limited yields and actual yields. Global studies generally rely on generic models combined with a grid-based approach. Although using a consistent method, it has been shown they are not suitable for local yield gap assessment. Local studies generally exploit knowledge of location-specific conditions and management, but are less comparable across locations due to different methods. To overcome these inconsistencies, the Global Yield Gap Atlas (GYGA, www.yieldgap.org) proposes a consistent bottom-up approach to estimate yield gaps. This paper outlines the implementation of GYGA for estimating yield gaps of cereals across Europe. For each country, climate zones are identified which represent the major growing areas. Within these climate zones, weather stations are selected with >=15 years of daily data. For dominant soil types within a buffer zone around the weather stations, the potential and water-limited yields are simulated with a crop model, using local knowledge on management. Actual yields are derived from sub-national statistics. Yield gaps are scaled up from buffer zones to climate zones and countries. We will present the first results for selected regions in Europe, and discuss methodological issues on location specific weather and upscaling from weather station buffer zones to climate zones and countries. Furthermore we will look ahead at the implementation of the yield gap cross cutting activity (XC9) in MACSUR-2. No Label
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2172
Permanent link to this record
 

 
Author Sandars, D.
Title Understanding Europe’s future ability to feed itself within an uncertain climate change and socio economic scenario space Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-54
Keywords
Abstract Europe’s ability to feed its population depends on the balance of agricultural productivity (yields and land suitability) and demand which are affected by future climate and socio-economic change (arising from changing food demand; prices; technology change etc).  Land use under 2050 climate change and socio-economic scenarios can be rapidly and systematically quantified with a modelling system that has been developed from meta-models of optimal cropping and crop and forest yields derived from the outputs of the previously developed complex models (Audsley et al; 2015). Profitability of each possible land use is modelled for every soil in every grid across the EU. Land use in a grid is then allocated based on profit thresholds set for intensive agriculture extensive agriculture, managed forest and finally unmanaged forest or unmanaged land.  The European demand for food as a function of population, imports, food preferences and bioenergy, is a production constraint, as is irrigation water available.   The model iterates until demand is satisfied (or cannot be met at any price).  Results are presented as contour plots of key variables. For example, given a 40% increase in population from the baseline socio-economic scenario, adapting by increasing crop yields by 40% will leave a 38% probability that the 2050 future climate will be such that we cannot feed ourselves – considering “all” the possible climate scenarios. No Label
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2169
Permanent link to this record