|   | 
Details
   web
Records
Author Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P.; Young, D.
Title Regrowth simulation of the perennial grass timothy Type Journal Article
Year 2012 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 232 Issue Pages 64-77
Keywords biomass; carbohydrate; leaf area index; n uptake; reserve-dependent growth; temperature; nutritive-value; carbohydrate reserves; phleum-pratense; catimo model; leaf-area; nitrogen-fertilization; spring harvest; meadow fescue; tall fescue; growth
Abstract Several process-based models for simulating the growth of perennial grasses have been developed but few include the simulation of regrowth. The model CATIMO simulates the primary growth of timothy (Phleum pratense L), an important perennial forage grass species in northern regions of Europe and North America. Our objective was to further develop the model CATIMO to simulate timothy regrowth using the concept of reserve-dependent growth. The performance of this modified CATIMO model in simulating leaf area index (LAI), biomass dry matter (DM) yield, and N uptake of regrowth was assessed with data from four independent field experiments in Norway, Finland, and western and eastern Canada using an approach that combines graphical comparison and statistical analysis. Biomass DM yield and N uptake of regrowth were predicted at the same accuracy as primary growth with linear regression coefficients of determination between measured and simulated values greater than 0.79, model simulation efficiencies greater than 0.78, and normalized root mean square errors (14-30% for biomass and 24-34% for N uptake) comparable with the coefficients of variation of measured data (1-21% for biomass and 1-25% for N uptake). The model satisfactorily simulated the regrowth LAI but only up to a value of about 4.0. The modified CATIMO model with its capacity to simulate regrowth provides a framework to simulate perennial grasses with multiple harvests, and to explore management options for sustainable grass production under different environmental conditions. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM Approved no
Call Number MA @ admin @ Serial 4473
Permanent link to this record
 

 
Author Legarrea, S.; Betancourt, M.; Plaza, M.; Fraile, A.; García-Arenal, F.; Fereres, A.
Title Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets Type Journal Article
Year 2012 Publication Virus Research Abbreviated Journal Virus Res.
Volume 165 Issue 1 Pages 1-8
Keywords Absorption; Animals; Aphids/growth & development/radiation effects/*virology; Insect Control/instrumentation/*methods; Insect Vectors/growth & development/radiation effects/*virology; Lettuce/parasitology/*virology; Plant Diseases/prevention & control/*virology; Plant Viruses/*physiology; Protective Devices/virology; Ultraviolet Rays
Abstract Aphid-transmitted viruses frequently cause severe epidemics in lettuce grown under Mediterranean climates. Spatio-temporal dynamics of aphid-transmitted viruses and its vector were studied on lettuce (Lactuca sativa L.) grown under tunnels covered by two types of nets: a commercial UV-absorbing net (Bionet) and a Standard net. A group of plants infected by Cucumber mosaic virus (CMV, family Bromoviridae, genus Cucumovirus) and Lettuce mosaic virus (LMV, family Potyviridae, genus Potyvirus) was transplanted in each plot. The same virus-infected source plants were artificially infested by the aphid Macrosiphum euphorbiae (Thomas). Secondary spread of insects was weekly monitored and plants were sampled for the detection of viruses every two weeks. In 2008, the infection rate of both CMV and LMV were lower under the Bionet than under the Standard cover, probably due to the lower population density and lower dispersal rate achieved by M. euphorbiae. However, during spring of 2009, significant differences in the rate of infection between the two covers were only found for LMV six weeks after transplant. The spatial distribution of the viruses analysed by SADIE methodology was “at random”, and it was not associated to the spatial pattern of the vector. The results obtained are discussed analyzing the wide range of interactions that occurred among UV-radiation, host plant, viruses, insect vector and environmental conditions. Our results show that UV-absorbing nets can be recommended as a component of an integrated disease management program to reduce secondary spread of lettuce viruses, although not as a control measure on its own.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1702 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4475
Permanent link to this record
 

 
Author Zhang, S.; Tao, F.; Zhang, Z.
Title Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China Type Journal Article
Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 87 Issue Pages 30-39
Keywords Crop model, Extreme weather, Impacts, Rice development rate, Uncertainty; Climate-Change; Growth Duration; Crop Model; Ceres-Rice; Wheat; Temperature; Impact; Yield; Optimization; Performance
Abstract Rice models have been widely used in simulating and predicting rice phenology in contrasting climate zones, however the uncertainties from model structure (different equations or models) and/or model parameters were rarely investigated. Here, five rice phenological models/modules (Le., CERES-Rice, ORYZA2000, RCM, Beta Model and SIMRIW) were applied to simulate rice phenology at 23 experimental stations from 1992 to 2009 in two major rice cultivation regions of China: the northeastern China and the southwestern China. To investigate the uncertainties from model biophysical parameters, each model was run with randomly perturbed 50 sets of parameters. The results showed that the median of ensemble simulations were better than the simulation by most models. Models couldn’t simulate well in some specific years despite of parameters optimization, suggesting model structure limit model performance in some cases. The models adopting accumulative thermal time function (e.g., CERES-Rice and ORYZA2000) had better performance in the southwestern China, in contrast, those adopting exponential function (e.g., Beta model and RCM model) had better performance in the northeastern China. In northeastern China, the contribution of model structure and model parameters to model total variance was, respectively, about 55.90% and 44.10% in simulating heading date, and about 75.43% and 24.57% in simulating maturity date. In the southwestern China, the contribution of model structure and model parameters to model total variance was, respectively, about 79.97% and 27.03% in simulating heading date, about 92.15% and 7.85% in simulating maturity date. Uncertainty from model structure was the most relevant source. The results highlight that the temperature response functions of rice development rate under extreme climate conditions should be improved based on environment-controlled experimental data.
Address 2017-08-07
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5170
Permanent link to this record
 

 
Author Lizaso, J.I.; Ruiz-Rarnos, M.; Rodriguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sanchez, D.; Garcia, E.; Rodriguez, A.
Title Impact of high temperatures in maize: Phenology and yield components Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 216 Issue Pages 129-140
Keywords Heat stress; Maize; Kernel number; Anthesis, Beta function; Vapor-Pressure Deficit; Heat-Stress; Transpiration Response; Pollen; Viability; Leaf Appearance; Climate-Change; Kernel Number; Grain-Yield; Growth; Plants
Abstract Heat stress is a main threat to current and future global maize production. Adaptation of maize to future warmer conditions requires improving our understanding of crop responses to elevated temperatures. For this purpose, the same short-season (FAO 300) maize hybrid PR37N01 was grown over three years of field experiments on three contrasting Spanish locations in terms of temperature regime. The information complemented three years of greenhouse experiments with the same hybrid, applying heat treatments at various critical moments of the crop cycle. Crop phenology, growth, grain yield, and yield components were monitored. An optimized beta function improved the calculation of thermal time compared to the linear-cutoff estimator with base and optimum temperatures of 8 and 34 degrees C, respectively. Our results showed that warmer temperatures accelerate development rate resulting in shorter vegetative and reproductive phases (ca. 30 days for the whole cycle). Heat stress did not cause silking delay in relation to anthesis (extended anthesis-silking interval), at least in the range of temperatures (maximum temperature up to 42.9 degrees C in the field and up to 52.5 degrees C in the greenhouse) considered in this study. Our results indicated that maize grain yield is reduced under heat stress mainly via pollen viability that in turn determines kernel number, although a smaller but significant effect of the female component has been also detected.
Address 2018-02-19
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5190
Permanent link to this record
 

 
Author Andreoli, V.; Cassardo, C.; Iacona, L.T.; Spanna, F.
Title Description and Preliminary Simulations with the Italian Vineyard Integrated Numerical Model for Estimating Physiological Values (IVINE) Type Journal Article
Year 2019 Publication Agronomy Abbreviated Journal Agronomy
Volume 9 Issue 2 Pages
Keywords viticulture; crop model; phenology; physiological processes; climate; micrometeorology; microclimate; climate change; water status; balance model; crop; phenology; growth; STICS; implementation; carbon; yield
Abstract The numerical crop growth model Italian Vineyard Integrated Numerical model for Estimating physiological values (IVINE) was developed in order to evaluate environmental forcing effects on vine growth. The IVINE model simulates vine growth processes with parameterizations, allowing the understanding of plant conditions at a vineyard scale. It requires a set of meteorology data and soil water status as boundary conditions. The primary model outputs are main phenological stages, leaf development, yield, and sugar concentration. The model requires setting some variety information depending on the cultivar: At present, IVINE is optimized for Vitis vinifera L. Nebbiolo, a variety grown mostly in the Piedmont region (northwestern Italy). In order to evaluate the model accuracy, IVINE was validated using experimental observations gathered in Piedmontese vineyards, showing performances similar or slightly better than those of other widely used crop models. The results of a sensitivity analysis performed to highlight the effects of the variations of air temperature and soil water potential input variables on IVINE outputs showed that most phenological stages anticipated with increasing temperatures, while berry sugar content saturated at about 25.5 °Bx. Long-term (60 years, in the period 1950–2009) simulations performed over a Piedmontese subregion showed statistically significant variations of most IVINE output variables, with larger time trend slopes referring to the most recent 30-year period (1980–2009), thus confirming that ongoing climate change started influencing Piedmontese vineyards in 1980.
Address 2019-02-21
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4395 ISBN Medium article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5218
Permanent link to this record