|   | 
Details
   web
Records
Author Valin, H.; Sands, R.D.; van der Mensbrugghe, D. and; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky; Benjamin; Fujimori, S.; Hasegawa, T.; Havlik, P.; and Heyhoe, E.; Kyle, P.; Mason-D’Croz, D.; Paltsev; Sergey; Rolinski, S.; Tabeau, A.; van Meijl, H. and; von Lampe, M.; Willenbockel, D.
Title The future of food demand: Understanding differences in global economic models Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 51-67
Keywords world food demand; socioeconomic pathways; climate change; computable general equilibrium; partial equilibrium; systems
Abstract Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59-98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9\% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is -6% at the global level, and the effect of biofuel production on calorie availability is even smaller.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4752
Permanent link to this record
 

 
Author Jabloun, M.; Li, X.; Olesen, E.; Schelde, K.; Tao, F.
Title RDAISY: a comprehensive modelling framework for automated calibration, sensitivity and uncertainty analysis of the DAISY model Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12
Notes Approved no
Call Number MA @ admin @ Serial 2502
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.
Title Variability in crop yields associated with climate anomalies in China over the past three decades Type Journal Article
Year 2016 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 16 Issue 6 Pages 1715-1723
Keywords Adaptation; Climate change; Climate extremes; Drought; Impacts and vulnerability
Abstract We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.
Address 2016-06-20
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4757
Permanent link to this record
 

 
Author Hutchings, N.; Sanders, D.; Özkan, S.; De, H., Michel
Title Farm model comparison Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Livestock Modelling and Research Colloquium, Bilbao, Spain, 2014-10-14 to 2014-10-16
Notes Approved no
Call Number MA @ admin @ Serial 2497
Permanent link to this record
 

 
Author Iglesias, A.
Title Impacts of CAP relative to climate with respect to adaptation Type Conference Article
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords TradeM
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Climate-change impacts on farming systems in the next decades — why worry when you have CAP? A FACCE MACSUR workshop for policymakers, Brussels, 2015-05-06 to 2015-05-06
Notes Approved no
Call Number MA @ admin @ Serial 2498
Permanent link to this record