toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lehtonen, H.S.; Irz, X. url  openurl
  Title Impacts of reducing red meat consumption on agricultural production in Finland Type Journal Article
  Year 2013 Publication (down) Agriculture and Food Science Abbreviated Journal Agriculture and Food Science  
  Volume 22 Issue 3 Pages 356-370  
  Keywords agricultural sector modelling; food demand; greenhouse gas mitigation; agricultural policy; agricultural economics  
  Abstract This paper summarises the simulated effects on Finnish agrcultural production and trade of a 20% decrease in Finnish demand for red meat (beef, pork, lamb). According to our results, reduced red meat consumption would be offset by increased consumption of poultry meat, eggs, dairy products and fish, as well as small increases in consumption of fruits and vegetables, peas, nuts, cereal products and sweets. By including the derived demand changes in an agricultural sector model, we show that livestock production in Finland, incentivised by national production-linked payments for milk and bovine animals, would decrease by much less than 20% due to the complex nature of agricultural production and trade. Overall, assuming unchanged consumer preferences and agricultural policy, a 20% reduction in red meat consumption is not likely to lead to a substantial decrease in livestock production or changed land use, or greenhouse gas emissions, from Finnish agriculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1795-1895 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4607  
Permanent link to this record
 

 
Author Malone, R.W.; Kersebaum, K.C.; Kaspar, T.C.; Ma, L.; Jaynes, D.B.; Gillette, K. doi  openurl
  Title Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES Type Journal Article
  Year 2017 Publication (down) Agricultural Water Management Abbreviated Journal Agric. Water Manage.  
  Volume 184 Issue Pages 156-169  
  Keywords Subsurface drainage, Cover crop, Nitrate loss, Modeling, Denitrification; NITROGEN DYNAMICS; TILE DRAINAGE; AGROECOSYSTEM MODELS; MISSISSIPPI; RIVER; GROWTH-MODEL; RZWQM-DSSAT; DRAINMOD-N; CATCH CROP; SOIL; WATER  
  Abstract HERMES is a widely used agricultural system model; however, it has never been tested for simulating N loss to subsurface drainage. Here, we integrated a simple drain flbw component into HERMES. We then compared the predictions to four years of data (2002-2005) from central Iowa fields in corn-oybean with winter rye as a cover crop (CC) and without winter rye (NCC). We also compared the HERMES predictions to the more complex Root Zone Water Quality Model (RZWQM) predictions for the same dataset. The average annual observed and simulated N loss to drain flow were 43.8 and 44.4 kg N/ha (NCC) and 17.6 and 18.9 kg N/ha (CC). The slightly over predicted N loss for CC was because of over predicted nitrate concentration, which may be partly caused by slightly under predicted average annual rye shoot N (observed and simulated values were 47.8 and 46.0 kg N/ha). Also, recent research from the site suggests that the soil field capacity may be greater in CC while we used the same soil parameters for both treatments. A local sensitivity analysis suggests that increased field capacity affects HERMES simulations, which includes reduced drain flow nitrate concentrations, increased denitrification, and reduced drain flow volume. HERMES-simulated cumulative monthly drain flow and annual drain flow were reasonable compared to field data and HERMES performance was comparable to other published drainage model tests. Unlike the RZWQM simulations, however, the modified HERMES did riot accurately simulate the year to year variability in nitrate concentration difference between NCC and CC, possibly due in part to the lack of partial mixing and displacement of the soil solution. The results suggest that 1) the relatively simple model HERMES is a promising tool to estimate annual N loss to drain flow under corn-soybean rotations with winter rye as a cover crop and 2) soil field capacity is a critical parameter to investigate to more thoroughly understand and appropriately model denitrification and N losses to subsurface drainage. Published by Elsevier B.V.  
  Address 2017-04-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-3774 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4946  
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E. url  doi
openurl 
  Title Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria Type Journal Article
  Year 2016 Publication (down) Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 145 Issue Pages 39-50  
  Keywords Integrated land use modeling; Climate change impacts; Mitigation; Adaptation; Field-farm-landscape; Environment; agricultural landscapes; land-use; netherlands; adaptation; indicators; management; responses  
  Abstract Climate change is among the major drivers of agricultural land use change and demands autonomous farm adaptation as well as public mitigation and adaptation policies. In this article, we present an integrated land use model (ILM) mainly combining a bio-physical model and a bio-economic farm model at field, farm and landscape levels. The ILM is applied to a cropland dominated landscape in Austria to analyze impacts of climate change and mitigation and adaptation policy scenarios on farm production as well as on the abiotic environment and biotic environment. Changes in aggregated total farm gross margins from three climate change scenarios for 2040 range between + 1% and + 5% without policy intervention” and compared to a reference situation under the current climate. Changes in aggregated gross margins are even higher if adaptation policies are in place. However, increasing productivity from climate change leads to deteriorating environmental conditions such as declining plant species richness and landscape appearance. It has to be balanced by mitigation and adaptation policies taking into account effects from the considerable spatial heterogeneity such as revealed by the ILM. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4767  
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Dell’Unto, D.; Deligios, P.; Doro, L.; Lacetera, N.; Mula, L.; Pasqui, M.; Quaresima, S.; Vitali, A.; Roggero, P.P. url  doi
openurl 
  Title Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin Type Journal Article
  Year 2016 Publication (down) Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 147 Issue Pages 65-75  
  Keywords Adaptation of farms to CC; Mediterranean region; Discrete Stochastic Programming; Regional Atmospheric Modelling System; Crop models; Livestock models  
  Abstract The Mediterranean region has always shown a marked inter-annual variability in seasonal weather, creating uncertainty in decisional processes of cultivation and livestock breeding that should not be neglected when modeling farmers’ adaptive responses. This is especially relevant when assessing the impact of climate change (CC), which modifies the atmospheric variability and generates new uncertainty conditions, and the possibility of adaptation of agriculture. Our analysis examines this aspect reconstructing the effects of inter-annual climate variability in a diversified farming district that well represents a wide range of rainfed and irrigated agricultural systems in the Mediterranean area. We used a Regional Atmospheric Modelling System and a weather generator to generate 150 stochastic years of the present and near future climate. Then, we implemented calibrated crop and livestock models to estimate the corresponding productive responses in the form of probability distribution functions (PDFs) under the two climatic conditions. We assumed these PDFs able to represent the expectations of farmers in a discrete stochastic programming (DSP) model that reproduced their economic behaviour under uncertainty conditions. The comparison of the results in the two scenarios provided an assessment of the impact of CC, also taking into account the possibility of adjustment allowed by present technologies and price regimes. The DSP model is built in blocks that represent the farm typologies operating in the study area, each one with its own resource endowment, decisional constraints and economic response. Under this latter aspect, major differences emerged among farm typologies and sub-zones of the study area. A crucial element of differentiation was water availability, since only irrigated C3 crops took full advantage from the fertilization effect of increasing atmospheric CO2 concentration. Rainfed crop production was depressed by the expected reduction of spring rainfall associated to the higher temperatures. So, a dualism emerges between the smaller impact on crop production in the irrigated plain sub-zone, equipped with collective water networks and abundant irrigation resources, and the major negative impact in the hilly area, where these facilities and resources are absent. However intensive dairy farming was also negatively affected in terms of milk production and quality, and cattle mortality because of the increasing summer temperatures. This provides explicit guidance for addressing strategic adaptation policies and for framing farmers’ perception of CC, in order to help them to develop an awareness of the phenomena that are already in progress, which is a prerequisite for effective adaptation responses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4756  
Permanent link to this record
 

 
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W. url  doi
openurl 
  Title Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
  Year 2013 Publication (down) Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 120 Issue Pages 61-75  
  Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations  
  Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4737  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: