|   | 
Details
   web
Records
Author Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z.
Title Development of the Biome-BGC model for simulation of managed herbaceous ecosystems Type Journal Article
Year 2012 Publication (up) Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 226 Issue Pages 99-119
Keywords biogeochemical model; biome-bgc; grassland; management; soil moisture; bayesian calibration; carbon flux model; regional applications; bayesian calibration; use efficiency; general-model; exchange; balance; climate; grassland; variability
Abstract Apart from measurements, numerical models are the most convenient instruments to analyze the carbon and water balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based Biome-BGC model is widely used to simulate the storage and flux of water, carbon, and nitrogen within the vegetation, litter, and soil of unmanaged terrestrial ecosystems. Considering herbaceous vegetation related simulations with Biome-BGC, soil moisture and growing season control on ecosystem functioning is inaccurate due to the simple soil hydrology and plant phenology representation within the model. Consequently, Biome-BGC has limited applicability in herbaceous ecosystems because (1) they are usually managed; (2) they are sensitive to soil processes, most of all hydrology; and (3) their carbon balance is closely connected with the growing season length. Our aim was to improve the applicability of Biome-BGC for managed herbaceous ecosystems by implementing several new modules, including management. A new index (heatsum growing season index) was defined to accurately estimate the first and the final days of the growing season. Instead of a simple bucket soil sub-model, a multilayer soil sub-model was implemented, which can handle the processes of runoff, diffusion and percolation. A new module was implemented to simulate the ecophysiological effect of drought stress on plant mortality. Mowing and grazing modules were integrated in order to quantify the functioning of managed ecosystems. After modifications, the Biome-BGC model was calibrated and validated using eddy covariance-based measurement data collected in Hungarian managed grassland ecosystems. Model calibration was performed based on the Bayes theorem. As a result of these developments and calibration, the performance of the model was substantially improved. Comparison with measurement-based estimate showed that the start and the end of the growing season are now predicted with an average accuracy of 5 and 4 days instead of 46 and 85 days as in the original model. Regarding the different sites and modeled fluxes (gross primary production, total ecosystem respiration, evapotranspiration), relative errors were between 18-60% using the original model and 10-18% using the developed model; squares of the correlation coefficients were between 0.02-0.49 using the original model and 0.50-0.81 using the developed model. (c) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4472
Permanent link to this record
 

 
Author Kersebaum, K.C.; Boote, K.J.; Jorgenson, J.S.; Nendel, C.; Bindi, M.; Frühauf, C.; Gaiser, T.; Hoogenboom, G.; Kollas, C.; Olesen, J.E.; Rötter, R.P.; Ruget, F.; Thorburn, P.J.; Trnka, M.; Wegehenkel, M.
Title Analysis and classification of data sets for calibration and validation of agro-ecosystem models Type Journal Article
Year 2015 Publication (up) Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 72 Issue Pages 402-417
Keywords field experiments; data quality; crop modelling; data requirement; minimum data; software; different climatic zones; soil-moisture sensors; spatial variability; nitrogen dynamics; crop models; systems simulation; wheat yields; elevated co2; growth; field
Abstract Experimental field data are used at different levels of complexity to calibrate, validate and improve agroecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4563
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R.
Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
Year 2014 Publication (up) Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 4 Pages
Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought
Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4814
Permanent link to this record
 

 
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takác, J.; Trnka, M.
Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
Year 2012 Publication (up) Field Crops Research Abbreviated Journal Field Crops Research
Volume 133 Issue Pages 23-36
Keywords climate; crop growth simulation; model comparison; spring barley; yield variability; uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity
Abstract In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4803
Permanent link to this record
 

 
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.-C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Takáč, J.; Trnka, M.
Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
Year 2012 Publication (up) Field Crops Research Abbreviated Journal Field Crops Research
Volume 133 Issue Pages 23-36
Keywords Climate; Crop growth simulation; Model comparison; Spring barley; Yield variability; Uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity
Abstract ► We compared nine crop simulation models for spring barley at seven sites in Europe. ► Applying crop models with restricted calibration leads to high uncertainties. ► Multi-crop model mean yield estimates were in good agreement with observations. ► The degree of uncertainty for simulated grain yield of barley was similar to winter wheat. ► We need more suitable data enabling us to verify different processes in the models. In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4592
Permanent link to this record