|   | 
Details
   web
Records
Author Zheng, B.; Chapman, S.C.; Christopher, J.T.; Frederiks, T.M.; Chenu, K.
Title Frost trends and their estimated impact on yield in the Australian wheatbelt Type Journal Article
Year 2015 Publication (up) Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3611-3623
Keywords Adaptation, Physiological/genetics; Australia; Computer Simulation; Ecotype; *Freezing; Genotype; Geography; Seasons; Triticum/genetics/*growth & development/physiology; Breeding; climate change; crop adaptation; crop modelling; ideotype; post-head-emergence frost; reproductive frost; spring radiant frost
Abstract Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4580
Permanent link to this record
 

 
Author Heinemann, A.B.; Barrios-Perez, C.; Ramirez-Villegas, J.; Arango-Londoño, D.; Bonilla-Findji, O.; Medeiros, J.C.; Jarvis, A.
Title Variation and impact of drought-stress patterns across upland rice target population of environments in Brazil Type Journal Article
Year 2015 Publication (up) Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3625-3638
Keywords Brazil; Climate; Computer Simulation; Crops, Agricultural/physiology; *Droughts; *Environment; Geography; Oryza/*physiology; Plant Transpiration; *Stress, Physiological; Water; Breeding; Oryza sativa; environment classification; modelling; water deficit.
Abstract The upland rice (UR) cropped area in Brazil has decreased in the last decade. Importantly, a portion of this decrease can be attributed to the current UR breeding programme strategy, according to which direct grain yield selection is targeted primarily to the most favourable areas. New strategies for more-efficient crop breeding under non-optimal conditions are needed for Brazil’s UR regions. Such strategies should include a classification of spatio-temporal yield variations in environmental groups, as well as a determination of prevalent drought types and their characteristics (duration, intensity, phenological timing, and physiological effects) within those environmental groups. This study used a process-based crop model to support the Brazilian UR breeding programme in their efforts to adopt a new strategy that accounts for the varying range of environments where UR is currently cultivated. Crop simulations based on a commonly grown cultivar (BRS Primavera) and statistical analyses of simulated yield suggested that the target population of environments can be divided into three groups of environments: a highly favorable environment (HFE, 19% of area), a favorable environment (FE, 44%), and least favourable environment (LFE, 37%). Stress-free conditions dominated the HFE group (69% likelihood) and reproductive stress dominated the LFE group (68% likelihood), whereas reproductive and terminal drought stress were found to be almost equally likely to occur in the FE group. For the best and worst environments, we propose specific adaptation focused on the representative stress, while for the FE, wide adaptation to drought is suggested. ‘Weighted selection’ is also a possible strategy for the FE and LFE environment groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4560
Permanent link to this record
 

 
Author De Swaef, T.; Bellocchi, G.; Aper, J.; Lootens, P.; Roldan-Ruiz, I.
Title Use of identifiability analysis in designing phenotyping experiments for modelling forage production and quality Type Journal Article
Year 2019 Publication (up) Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 70 Issue 9 Pages 2587-2604
Keywords Breeding; grassland modelling; identifiability analysis; perennial; ryegrass; phenotyping; sensitivity analysis; pasture simulation-model; practical identifiability; crop; water; parameters; systems; carbon; uncertainty; sensitivity; emissions
Abstract Agricultural systems models are complex and tend to be over-parameterized with respect to observational datasets. Practical identifiability analysis based on local sensitivity analysis has proved effective in investigating identifiable parameter sets in environmental models, but has not been applied to agricultural systems models. Here, we demonstrate that identifiability analysis improves experimental design to ensure independent parameter estimation for yield and quality outputs of a complex grassland model. The Pasture Simulation model (PaSim) was used to demonstrate the effectiveness of practical identifiability analysis in designing experiments and measurement protocols within phe-notyping experiments with perennial ryegrass. Virtual experiments were designed combining three factors: frequency of measurements, duration of the experiment. and location of trials. Our results demonstrate that (i) PaSim provides sufficient detail in terms of simulating biomass yield and quality of perennial ryegrass for use in breeding, (ii) typical breeding trials are insufficient to parameterize all influential parameters, (iii) the frequency of measurements is more important than the number of growing seasons to improve the identifiability of PaSim parameters, and (iv) identifiability analysis provides a sound approach for optimizing the design of multi-location trials. Practical identifiability analysis can play an important role in ensuring proper exploitation of phenotypic data and cost-effective multi-location experimental designs. Considering the growing importance of simulation models, this study supports the design of experiments and measurement protocols in the phenotyping networks that have recently been organized.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5231
Permanent link to this record
 

 
Author Özkan Gülzari, Ş.; Vosough Ahmadi, B.; Stott, A.W.
Title Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway Type Journal Article
Year 2018 Publication (up) Preventive Veterinary Medicine Abbreviated Journal Preventive Veterinary Medicine
Volume 150 Issue Pages 19-29
Keywords Dairy cow; Dynamic programming; Greenhouse gas emissions intensity; Profitability; Subclinical mastitis; Whole farm modelling
Abstract Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000 cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01 kg (kilogram) and 0.95 kg carbon dioxide equivalents (CO2e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000 cells/mL in relation to SCC level 800,000 cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We suggest that further studies exploring the impact of a combination of diseases on emissions intensity are warranted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-5877 ISBN Medium
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5181
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M.
Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
Year 2012 Publication (up) Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 12 Issue 3 Pages 407-419
Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology
Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4480
Permanent link to this record